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 PREFACE 

In February 2013, ROS stewardship was transferred from Willow Garage to the Open 

Source Robotics Foundation (OSRF).  The stated mission of OSRF is "to support the 

development, distribution, and adoption of open source software for use in robotics 

research, education, and product development."  The two major projects overseen by 

OSRF are ROS and Gazebo, the advanced 3D robot simulator. 

New ROS packages continue to be released on a regular basis by individuals and 

groups working in both university labs and the robotics industry.  Interest in learning 

ROS continues to grow, and the popularity of ROS By Example Volume 1 has exceeded 

my expectations.  Yet going beyond the basics still requires a fairly steep learning curve 

and realistic examples dealing with more advanced topics are not always easy to find. 

The overall goal of Volume 2 is to introduce a collection of ROS packages and tools 

that are essential for programming truly autonomous robots.  This includes the use of 

executive task managers like SMACH and Behavior Trees, creating custom URDF 

models for different robots, monitoring the health of the robot using ROS diagnostics, 

multiplexing control inputs and assigning priorities, controlling a multi-jointed arm for 

reaching and grasping, monitoring and controlling the robot through a web browser, 

and performing realistic simulations using Gazebo.  When we are finished, you will 

have the tools necessary to program an "always on" robot that can monitor its own 

subsystems and perform a series of tasks without human intervention. 

Please note that the code in this book is written for ROS Indigo.  While some of it 

might work on earlier versions of ROS, it is highly recommended that the reader use 

ROS Indigo with this book. 



 

 

 



 

 

 PRINTED VS PDF VERSIONS OF THE BOOK 

The printed and PDF versions of this book are nearly the same with a few important 

differences.  The page formatting is identical but most PDF readers start page 

numbering from the first page and ignore what is set by the document itself.  Images 

and code syntax are in color in the PDF version but grayscale in the printed version to 

keep the cost reasonable.  The PDF version is full of clickable links to other resources 

on the Web.  In the printed version, these links appear as underlined text with a 

numbered superscript.  The expanded URLs are then listed as endnotes at the end of the 

book. 

Staying Up-To-Date: If you'd like to ask questions about the book or the sample code, 

or receive notifications regarding updates and bug fixes, please join the ros-by-example 

Google Group. 
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 1.  SCOPE OF THIS VOLUME 

In Volume 1 we learned how to program a robot using the fundamental components of 

ROS including the control of a mobile base, SLAM, robot vision (OpenCV, OpenNI and 

a little bit of PCL), speech recognition, and joint control using Dynamixel servos.  In 

this volume we will tackle some of the more advanced ROS concepts and packages that 

are essential for programming truly autonomous robot behaviors including: 

• executive task managers such as smach and behavior trees 

• creating a model for your own robot using URDF/Xacro descriptions, including 

a pan-and-tilt head, multi-jointed arm(s) and gripper(s), a telescoping torso, and 

the placement of sensors such as a laser scanner 

• configuring the arbotix packages for controlling Dynamixel servos 

• using the ROS diagnostics package to enable your robot to monitor its own 

systems such as battery levels and servo temperatures 

• altering your robot's parameters on the fly using dynamic_reconfigure 

• multiplexing ROS topics using mux and yocs so that control inputs can be 

prioritized and not work against each other 

• using AR tags for object detection and tracking 

• tracking objects in 3D and perceiving the spatial relationship between an object 

and the robot 

• controlling a multi-jointed arm and gripper using the new MoveIt! framework 

including the execution of forward and inverse kinematics, collision avoidance, 

grasping, and pick-and-place tasks 

• working with simulated robots and environments using the sophisticated 

Gazebo simulator 

• creating a web-based GUI for your robot using rosbridge, HTML and Javascript 

NOTE: The chapter on Gazebo assumes we already have a robot model like the Kobuki 

or UBR-1 whose developers have provided the necessary Gazebo properties and plugins 

to handle the simulated physics of the robot.  Creating either worlds or Gazebo plugins  



 

 Scope of this Volume 

for a new robot from scratch is outside the scope of this volume but is covered in the 

online Gazebo Tutorials. 

Several of the topics we will cover could consume an entire book on their own so we 

will focus on the key concepts while providing additional references for the reader to 

explore further details if desired.  As in the first volume, all the code samples are 

written in Python which tends to be a little more accessible than C++ for an 

introductory text. 

Once you have mastered the concepts presented in this volume, you should be able to 

create a URDF model for your robot, including an arm and pan-and-tilt head, then 

program it to perform a series of autonomous tasks and behaviors, monitor its own 

subsystems, prioritize its control inputs to match the current situation, track objects in 

3dimensional space, understand how to program a multi-jointed arm and gripper using 

collision-aware inverse kinematics, and write your own HTML/Javascript interface to 

monitor and control your robot using web browser. 
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 2.  INSTALLING THE ROS-BY-EXAMPLE CODE 

Please note that the code in this book is written for ROS Indigo.  While some of the 

code might work on earlier versions of ROS, it is highly recommended that the reader 

use ROS Indigo with this book.  In particular, the prerequisite packages listed below 

and the MoveIt! sample programs for arm navigation are specific to Indigo. 

Before installing the Volume 2 code itself, it will save some time if we install most of 

the additional ROS packages we will need later.  (Instructions will also be provided for 

installing individual packages as needed throughout the book.)  Simply copy and paste 

the following command (without the $ sign) into a terminal window to install the 

Debian packages we will need.  (If you are reading the printed version of the book, see 

below for alternate instructions.)  The \ character at the end of each line makes the 

entire block appear like a single line to Linux when doing a copy-and-paste: 

$ sudo apt-get install ros-indigo-arbotix \ ros-indigo-dynamixel-
motor ros-indigo-rosbridge-suite \ ros-indigo-mjpeg-server ros-
indigo-rgbd-launch \ ros-indigo-openni-camera ros-indigo-moveit-
full \ 
ros-indigo-turtlebot-* ros-indigo-kobuki-* ros-indigo-moveit-python \ 
python-pygraph python-pygraphviz python-easygui \ mini-httpd 
ros-indigo-laser-pipeline ros-indigo-ar-track-alvar \ 
ros-indigo-laser-filters ros-indigo-hokuyo-node \ ros-indigo-
depthimage-to-laserscan ros-indigo-moveit-ikfast \ 
ros-indigo-gazebo-ros ros-indigo-gazebo-ros-pkgs \ ros-indigo-
gazebo-msgs ros-indigo-gazebo-plugins \ ros-indigo-gazebo-ros-
control ros-indigo-cmake-modules \ ros-indigo-kobuki-gazebo-plugins 
ros-indigo-kobuki-gazebo \ ros-indigo-smach ros-indigo-smach-ros 
ros-indigo-grasping-msgs\ ros-indigo-executive-smach ros-indigo-
smach-viewer \ ros-indigo-robot-pose-publisher ros-indigo-tf2-web-
republisher \ graphviz-dev libgraphviz-dev gv python-scipy 

If you are reading the printed version of the book, then copy and paste is probably not 

an option.  Instead, you can use the following commands to download a small shell 

script called rbx2-prereq.sh that will run the apt-get command above: 

$ cd ~ 
$ wget https://raw.githubusercontent.com/pirobot/rbx2/indigo-

devel/rbx2prereq.sh 
$ sh rbx2-prereq.sh 



 

 Installing the ros-by-example Code 

We will also need the code from the Volume 1 repository (rbx1) even if you do not have 

the book.  To install the rbx1 code for ROS Indigo (in case you don't already have it), 

run the following commands: 

$ cd ~/catkin_ws/src 
$ git clone https://github.com/pirobot/rbx1.git 
$ cd rbx1 
$ git checkout indigo-devel 
$ cd ~/catkin_ws 
$ catkin_make 
$ source ~/catkin_ws/devel/setup.bash 

To clone and build the Volume 2 repository (rbx2) for ROS Indigo, follow these steps: 

$ cd ~/catkin_ws/src 
$ git clone https://github.com/pirobot/rbx2.git 
$ cd rbx2 
$ git checkout indigo-devel 
$ cd ~/catkin_ws 
$ catkin_make 
$ source ~/catkin_ws/devel/setup.bash 

NOTE : The last line above should be added to the end of your ~/.bashrc file if you 

haven't done so already.  This will ensure that your catkin packages are added to your 

ROS_PACKAGE_PATH whenever you open a new terminal.   

If the ROS By Example code is updated at a later time, you can merge the updates with 

your local copy of the repository by using the following commands: 

 

Staying Up-To-Date:  If you'd like to ask questions about the code, report bugs, or 

receive notifications of updates, please join the ros-by-example Google Group. 

All of the ROS By Example Volume 2 packages begin with the letters rbx2.  To list the 

packages, move into the parent of the rbx2 meta-package and use the Linux ls 

command: 

 

$ cd ~/catkin_ws/src/rbx2 
$ git pull 
$ cd ~/catkin_ws 
$ catkin_make 
$ source devel/setup.bash 

$ roscd rbx2 
$ cd .. 
$ ls -F 
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which should result in the following listing: 

pedestal_pi_no_gripper_moveit_config/    rbx2_bringup/      rbx2_msgs/ 
pedestal_pi_with_gripper_moveit_config/  rbx2_description/  rbx2_nav/ 
pi_robot_moveit_config/                  rbx2_diagnostics/  rbx2_tasks/ rbx2/                                    
rbx2_dynamixels/   rbx2_utils/ rbx2_arm_nav/                            
rbx2_gazebo/       rbx2_vision/ rbx2_ar_tags/                            
rbx2_gui/          README.md  

Throughout the book we will be using the roscd command to move from one package 

to another.  For example, to move into the rbx2_dynamixels package, you would use 

the command: 

 

Note that you can run this command from any directory and ROS will find the package. 

IMPORTANT: If you are using two computers to control or monitor your robot, such 

as a laptop on the robot together with a second computer on your desktop, be sure to 

clone and build the Indigo branch of the rbx2 and rbx1 repositories on both machines. 

$ roscd rbx2_dynamixels 
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 3.  TASK EXECUTION USING ROS 

As we discovered in Volume 1, it is relatively straightforward to program a robot to 

execute a particular behavior such as face tracking, navigating between locations, or 

following a person.  But a fully autonomous robot will be expected to select its own 

actions from a larger repertoire of behaviors depending upon the task at hand and the 

current conditions. 

In this chapter, we will learn how to use two different ROS-enabled task execution 

frameworks: SMACH (using state machines and pronounced "smash") and pi_trees 

(behavior trees).  Each approach has its strengths and weaknesses and one might seem 

easier or harder depending on your programming background.  But both methods 

provide a more structured approach to task management than simply writing a large list 

of if-then statements. 

The overall task controller is often called the task executive and most such executives 

are expected to include at least the following key features: 

• task priorities: A lower priority task should be preempted if a higher priority 

task requires the same resources (e.g. drive motors). 

• pause and resume: It is often desirable to pause a currently running task (or 

tasks) when a higher-priority task is given control and then to resume the 

preempted task(s) when the executive yields back control.  For example, the 

Neato vacuum cleaner is able to return to the place it left off after recharging. 

• task hierarchy: Tasks can often be broken down into subtasks to handle the 

details.  For instance, a high level task called recharge might consist of three 

subtasks: navigate to the docking station, dock the robot, and charge the 

battery. Similarly, the docking task could be broken down into: align with 

beacon; drive forward; stop when docked.   

• conditions: Both sensor data and internal programming variables can place 

constraints on when and how a task will be executed.  In ROS, these variables 

often take the form of messages being published by various nodes.  For 

example, the battery monitoring task will subscribe to a diagnostics topic that 

includes the current battery level. When a low battery level is detected, a check 

battery condition should fire and the recharging task will begin execution while 

other tasks are paused or aborted. 
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• concurrency: Multiple tasks can run in parallel. For example, both the 

navigation task (getting to the next waypoint) and the battery monitoring task 

must run at the same time. 

To keep things concrete, we will use two example scenarios throughout the chapter: a 

"Patrol Bot" that must visit a series a locations in sequence while keeping its battery 

from running down, and a "house cleaning robot" that must visit a number of rooms 

and perform various cleaning tasks relevant to each room. 

 3.1  A Fake Battery Simulator 

An always-on robot will need to monitor its battery levels and recharge when necessary.  

To make our examples more realistic, we will therefore use a node that simulates a 

battery by publishing a decreasing value on a battery level ROS topic.  Other nodes can 

then subscribe to this topic and respond accordingly when the battery level falls too 

low. 

The battery simulator node battery_simulator.py can be found in the directory 

rbx2_utils/nodes.  The script is fairly straightforward except perhaps for the parts 

relating to dynamic reconfigure which we will cover in detail in Chapter 7.  For now, 

we only need to note the following. 

The node takes three parameters: 

• rate: (default 1 Hz) – how often to publish the battery level 

• battery_runtime: (default 60 seconds) – how long in seconds it takes the 

battery to run down to 0 

• initial_battery_level: (default 100) – the initial charge level of the 

battery when we first start the node 

The node publishes a floating point value on the /battery_level topic starting with 

the initial_battery_level and counting down to 0 over a time period specified 

by the battery_runtime parameter.  Both parameters can be specified in a launch 

file as we have done in the battery_simulator.launch file found in the 

rbx2_utils/launch directory.  You can also specify the battery runtime (in seconds) 

on the command line as an argument.  Let's test the simulator by running the launch file 

now: 

$ roslaunch rbx2_utils battery_simulator.launch 

You can verify that the simulator is working by opening another terminal and running 

the command: 
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which should yield an output similar to: 

data: 91.0  
---  
data: 90.6666641235  
---  
data: 90.3333358765  
--- etc 

The node also defines a ROS service called set_battery_level that takes a floating 

point value as an argument and sets the battery charge to that level.  We will use this 

service to simulate a recharge of the battery by setting the level to 100 or to simulate a 

sudden depletion of the battery by setting a low value. 

The set_battery_level service can be used as follows: 

$ rosservice call /battery_simulator/set_battery_level 100  

where the argument is a number between 0 and 100.  To simulate a recharge, use the 

set_battery_level service to set the level to a high number such as 100.  To 

simulate a sudden drop in the battery level, set the value to a lower level such as 30.  

This will allow us to test how various nodes respond to a low battery condition. 

The battery simulator can also be controlled using rqt_reconfigure. To change the 

battery runtime or manually set the battery level, bring up rqt_reconfigure: 

$ rosrun rqt_reconfigure rqt_reconfigure then click on the 

battery_simulator node to see the following options: 

 

$ rostopic echo /battery_level 
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Use the sliders or text boxes to change the battery runtime or battery level. 

We will use the battery simulator throughout this chapter to compare how different task 

frameworks enable us to handle a low battery condition while simultaneously 

performing other tasks. 

 3.2  A Common Setup for Running the Examples 

All of our examples will share a common setup.  There will be four waypoints (target 

locations) located at the corners of a square measuring 1 meter on a side.  The docking 

station will be positioned in the middle of the square.  Both the waypoints and the 

docking station will appear in RViz as visualization markers.  The waypoints will 

appear as colored squares and the docking station as a yellow disc.  These markers are 

not meant to have any depth so the robot can freely pass over them.  The basic setup is 

shown below along with a fake TurtleBot. 

 

The setup of these variables is taken care of by the file task_setup.py located in the 

directory rbx2_tasks/src/rbx2_tasks.  In each of our examples, we will import 

this file to establish the basic environment.  Some of the more important variables that 

are set in task_setup.py are as follows: 

• square_size (default: 1.0 meter) 
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• low_battery_threshold (default: 50) 

• n_patrols (default: 2) 

• move_base_timeout (default: 10 seconds) 

We also define the waypoint locations as well as the location of the docking station.  

Any of these can be changed to suit your needs. 

Finally, we define a move_base client and a cmd_vel publisher for controlling the 

movement of the robot. 

 3.3  A Brief Review of ROS Actions 

Since we will be using the move_base action quite a bit in this chapter, it's a good idea 

to review the general concept of a ROS action.  Be sure to start with the actionlib 

overview on the ROS Wiki,  then work through the online tutorials where examples are 

provided in both C++ and Python. 

Recall that a ROS action expects a goal to be submitted by an action client.  The action 

server will then typically provide feedback as progress is made toward the goal and a 

result when the goal is either succeeded, aborted, or preempted. 

Perhaps the most familiar example of a ROS action is the MoveBaseAction used with 

the ROS navigation stack.  The move_base package implements an action server that 

accepts a goal pose for the robot (position and orientation) and attempts to reach that 

goal by publishing Twist messages while monitoring odometry and laser scan data to 

avoid obstacles.  Along the way, feedback is provided in the form of a time-stamped 

pose representing the state of the robot, as well as the goal status (e.g. ACTIVE, 

SUCCEEDED, ABORTED, etc).  The result of the action is simply a time-stamped status 

message indicating that the goal succeeded or was aborted, preempted etc. 

You can view the full definition of the MoveBaseAction using the command: 

$ rosmsg show MoveBaseAction 

To view just the feedback message syntax, use the command: 

$ rosmsg show MoveBaseActionFeedback  

And to see the list of possible statuses returned by the result, run the command: 

$ rosmsg show MoveBaseActionResult 
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Recall from Volume 1 that we programmed our robot to navigate a square by using a 

series of move_base actions.  For each corner of the square, we sent the corresponding 

pose to the move_base action server, then waited for a result before submitting the next 

goal pose.   However, suppose that as the robot moves between waypoints, we also want 

the robot to execute a number of subtasks at each location.  For example, one task might 

be to look for a particular object and record its location or pick it up if the robot has an 

arm and gripper.  At the same time, we want the robot to monitor its battery levels and 

navigate to the docking station, and so on. 

All of this can be done using ROS actions but one would have to create an action server 

for each task, then coordinate the tasks with a number of if-then conditions or 

interacting callbacks among the actions.  While certainly possible, the resulting code 

would be rather tedious.  Fortunately, both SMACH and behavior trees help to make 

these more complicated situations easier to program. 

 3.4  A Patrol Bot Example 

Suppose our robot's task is to patrol the perimeter of a square by navigating from corner 

to corner in sequence.  If the battery level falls below a certain threshold, the robot 

should stop its patrol and navigate to the docking station.  After  recharging, the robot 

should continue the patrol where it left off. 

The general components of the patrol task look something like this: 

• initialization: 

◦ set waypoint coordinates 

◦ set docking station coordinates ◦ set 

number of patrols to perform 

• tasks (ordered by priority): 

◦ CHECK_BATTERY 

◦ RECHARGE ◦ 

PATROL 

• sensors and actuators: 

◦ battery sensor; laser scanner, RGB-D camera, etc. 
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◦ drive motors 

The CHECK_BATTERY task simply sets a flag when the battery level falls below a set 

threshold. 

The RECHARGE task can be broken down into the following subtasks: 

RECHARGE: NAV_DOCK → CHARGE 

where NAV_DOCK means navigate to the docking station.  The PATROL task can also be 

broken down into a sequence of navigation subtasks: 

PATROL: NAV_0 → NAV_1 → NAV_2 → NAV_3 

where we have indexed each navigation task by the waypoint number (one for each 

corner of the square).  The navigation tasks can then be implemented using standard 

ROS MoveBaseAction goals and the navigation stack as we did in Volume 1. 

Before learning how to implement the Patrol Bot using SMACH or behavior trees, let's 

review how it could be done using a standard script. 

 3.5  The Patrol Bot using a Standard Script 

Our script will subscribe to the battery level topic with a callback function that sets a 

low_battery flag to True if the level falls below a given threshold as follows: 

    def battery_cb(self, msg):         if msg.data 
< self.low_battery_threshold:             
self.low_battery = True         else:             
self.low_battery = False 

This check is done at the same frequency as the rate at which messages are received on 

the battery level topic. 

In the meantime, the our main control loop might start off looking something like this: 

    while n_patrols < max_patrols:         
if low_battery:             
recharge()         else: 
            patrol() 

At the start of each patrol, we check the battery level and recharge if necessary.  

Otherwise, we start the patrol.  Of course, this simple strategy won't work in practice 

since the battery is likely to run down in between battery checks when the robot is part 

way around the course.  Let's see how we might correct this problem. 
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The patrol() routine moves the robot through the sequence of waypoints something 

like this: 

    def patrol():        for 
location in waypoints:           
nav_to_waypoint(location) 

When we write it out this way, we see that we should move the battery check inside the 

nav_to_waypoint() function: 

    def nav_to_waypoint(location):         
if low_battery:             
recharge()         else:             
move_to(location) 

At least now we are checking the battery level before we move on to each waypoint.  

However, the move_to(location) function could take some time to complete 

depending on how far away the next waypoint is located.  So we really need to move the 

battery check even deeper and place it inside the move_to() routine. 

In ROS, the move_to() function will likely implemented as call to the 

MoveBaseAction server so the battery check would be done inside the feedback 

callback for the move_base client.  The result would look something like this: 
    move_base.send_goal(goal, feedback_cb=self.nav_feedback_cb) 

    def nav_feedback_cb(self, msg):         
if self.low_battery:             

self.recharge() 

Now we are checking the battery status every time we receive a feedback message from 

the MoveBaseAction server which should be frequent enough to avoid a dead battery.  

The recharge() function will cancel the current move_base goal before sending a 

new goal to the MoveBaseAction server to navigate the robot to the docking station for 

charging. 

The entire script outlined here can be found in the file patrol_script.py located in 

the rbx2_tasks/nodes directory. 

Link to source: patrol_script.py 

The script is fairly straightforward and will not be described in detail.  However, you can 

test it out as follows. 

First launch the fake TurtleBot in the ArbotiX simulator using the  
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fake_turtlebot.launch file in the rbx2_tasks/launch subdirectory.  This file 

will bring up the fake TurtleBot, a move_base action server with a blank map, and the 

battery simulator node with a default runtime of 60 seconds: 

$ roslaunch rbx2_tasks fake_turtlebot.launch 

Next, bring up RViz with the nav_tasks.rviz config file: 

$ rosrun rviz rviz -d `rospack find rbx2_tasks`/nav_tasks.rviz 

Finally, run the patrol_script.py script: 

$ rosrun rbx2_tasks patrol_script.py 

The view in RViz should look something like this: 

 
The robot should execute two loops around the square while monitoring its battery level. 

Whenever the battery falls below the threshold defined in the script (50), the robot will 

move to the circular docking station in the middle of the square.  Once recharged 

(battery level is set back to 100), the robot should continue its patrol where it left off.  

For example, if it did not quite make it to the second waypoint when it was forced to 

recharge, it should head back to that waypoint first before continuing the loop. 
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 3.6  Problems with the Script Approach 

The main issue with the standard script approach described above is that we had to bury 

the battery check deep within the navigation routine.  While this works fine for this 

particular example, it becomes less efficient as we add more tasks to the robot's 

behavior.  For example, suppose we want the robot to scan for the presence of a person 

at each waypoint by panning the camera left and right before moving on to the next 

location.  Our patrol routine might then look like this: 

    def patrol():         for 
location in waypoints:             
nav_to_waypoint(location)             
scan_for_humans() 

While the camera is being panned back and forth, we still need to keep tabs on the 

battery level but now we are no longer running a move_base goal.  This means we need 

to add a second battery check, this time to the head panning routine.  If the battery level 

falls below threshold at this point, we no longer need to cancel a navigation goal; 

instead, we need to recenter the camera before moving to the docking station. 

For each additional task, we need to add another battery check which results in  

redundancy in the code and makes our overall task executive less modular.  

Conceptually, the battery check should appear prominently near the top of our task 

hierarchy and we should really only have to check the battery level once on each pass 

through the task list. 

Another shortcoming of the script approach is that we are making direct calls to ROS 

actions, topics and services rather than through reusable wrappers that hide the common 

details.  For example, in addition to subscribing to the battery level topic, it is likely that 

we will also subscribe to other topics generated by additional sensors such as a depth 

camera, bump sensors, or a laser scanner.  All these subscribers share a similar setup 

pattern in terms of a topic name, topic type and callback function.  Task frameworks like 

SMACH define wrappers for ROS topics, services and actions that take care of the setup 

details thereby allowing these objects to be added to or deleted from a given task 

executive without having to repeat numerous lines of code. 

 3.7  SMACH or Behavior Trees? 

SMACH is a Python library for building complex robot behaviors using hierarchical state 

machines.  The smach_ros package provides tight integration with ROS topics, 

services and actions and there are a number of SMACH tutorials covering virtually all 

of its features.  For this reason, SMACH is usually a good place to start for most 

beginning ROS users.  However, if you are not already familiar with finite state 
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machines, this approach might seem a little confusing at first.  If you get stuck, there are 

other options available to you. 

A relatively new approach called behavior trees first gained popularity among 

programmers of computer games.  More recently, behavior trees have been used in 

robotics as well.  We will use a package called pi_trees that was written by the author 

specifically for this book but can be used any way you see fit.  Behavior trees organize 

robot tasks into a tree structure that make them relatively easy to conceptualize and 

program.  Furthermore, many of the properties we require from a task executive such as 

prioritization (subsumption), pause and resume (preemption), hierarchical organization 

(subtasks), and condition checking are natural properties of behavior trees that we 

simply get "for free" once we set up the infrastructure. 

We should also mention a third approach called teer.  Teer is also a standalone Python 

library for coordinating tasks but it uses coroutines instead of state machines.  A 

coroutine is like a subroutine but it provides access to its internal status while it is 

running.  (In Python, this is accomplished by using the yield keyword.)  Consequently, 

coroutines can be used to represent simultaneously running tasks that can also be paused 

and resumed.  Teer does not have built-in wrappers around ROS topics, services and 

actions like SMACH or pi_trees do so it takes a little more work to get up and running 

in a ROS environment; consequently, we won't cover it in this volume. 

 3.8  SMACH: Tasks as State Machines 

Before we can get started with SMACH, make sure you have the necessary ROS packages 

installed: 

$ sudo apt-get install ros-indigo-smach ros-indigo-smach-ros \ ros-
indigo-executive-smach ros-indigo-smach-viewer 

We will also make use of a simple GUI package called  python-easygui in some of 

our examples so let's install that now as well: 

$ sudo apt-get install python-easygui 

SMACH enables us to program a sequence of actions using finite state machines.  As the 

name suggests, a state machine can be in one of a number of states at any given time.  

The machine also accepts inputs, and depending on the value of the inputs and the 

current state, the machine can make a transition to another state.  As a result of making 

the transition, the state machine may also produce an outcome.  Finite state machines are 

also called automata or reactive systems since we only need to know the machine's 

current state and its input(s) to predict its next action. 
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One of the simplest real-world examples of a state machine is a lock and key.  The lock 

can be in one of two states, LOCKED or UNLOCKED while turning the key clockwise or 

counterclockwise is the input.  (By convention, state names are written in all upper 

case.)  The possible state transitions are from LOCKED to UNLOCKED and from 

UNLOCKED to LOCKED depending on the direction the key is turned.  (For completeness, 

we could also specify the transitions LOCKED to LOCKED and UNLOCKED to UNLOCKED.)  

The outcomes are that the door can be opened or that it cannot.  

The SMACH package provides a standalone Python library for creating state machines 

and a ROS wrapper for integrating the library with ROS topics, services and actions.  

The SMACH Wiki pages includes a number of excellent tutorials and the reader is 

encouraged to work through as many of them as possible.  At the very least, it is 

essential to understand the Getting Started page.  We will assume some familiarity with 

these tutorials as we walk through our examples. 

SMACH has a lot of features and may appear a little overwhelming at first.  So we will 

take each component in turn using examples that provide some visual feedback.  But 

first, a short review of what you learned in the online tutorials. 

 3.8.1  SMACH review 

We assume that you have worked through at least some of the tutorials on the SMACH 

Wiki so we will provide only a review of the essential concepts here.  If you need more 

details on a given class or function, you can look it up in the SMACH API.  You can also 

go directly to the source on GitHub. 

SMACH states are Python classes that extend the smach.State class by overriding the 

execute() method to return one or more possible outcomes.  The execute method 

can also take an optional argument defining a collection of userdata that can be used 

to pass information between states.  The actual computations performed by the state can 

be essentially anything you want, but there are a number of predefined state types that 

can save a lot of unnecessary code.  In particular, the SimpleActionState class turns 

a regular ROS action into a SMACH state.  Similarly, the MonitorState wraps a ROS 

topic and the ServiceState handles ROS services.  The CBState uses the  

@smach.cb_interface decorator to turn nearly any function you like into a SMACH 

state. 

A SMACH state machine is another Python class (smach.StateMachine) that can 

contain a number of states.  A state is added to a state machine by defining a set of 

transitions from the state's outcomes to other states in the machine.  When a state 

machine is run, these transitions determine the flow of execution from state to state: 
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input → STATE_1 → {outcome, transition} → STATE_2 

input → STATE_2  → {outcome, transition} → STATE_3 

etc. 

A state machine itself must have an outcome and can therefore be a state in another state 

machine.  In this way, state machines can be nested to form a hierarchy.  For example, a 

state machine called "clean house" could contain the nested state machines "vacuum 

living room ", "mop kitchen", "wash tub" and so on.   The higher level state machine 

"clean house" will determine how the outcomes of the nested state machines map into 

the overall outcome (e.g. "all tasks complete" or "not all tasks complete"). 

There are a number of predefined SMACH containers that can also save you a lot of 

programming.  The Concurrence container returns an outcome that depends on more 

than one state and allows one state to preempt another.  The Sequence container 

automatically generates sequential transitions among the states that are added to it.  And 

the Iterator container allows you to loop through one or more states until some 

condition is met.  We will learn more about these containers as we need them. 

 3.8.2  Patrolling a square using SMACH 

In Volume 1, we programmed our robot to navigate around a square using a variety of 

methods including move_base actions.  And earlier in this chapter we used a Python 

script to do the same thing while also monitoring a simulated battery level.  Let us now 

see how we can use SMACH to accomplish the same goal. 

In this section, we will leave out the battery check and simply move the robot around the 

square.  In the next section we will add in the battery check and enable the robot to 

recharge when necessary. 

One way to conceptualize the patrol problem is that we want the robot to be in one of 

four states—namely, the poses that define the four corners of the square.  Furthermore, 

we want the robot to transition through these states in a particular order.  Equivalently, 

we could say that we want the robot to execute four tasks; namely, to move to each of 

the corner locations in sequence. 

Let us name the four states NAV_STATE_0  through NAV_STATE_3.  Our state machine 

will then be defined by the following states and transitions: 

NAV_STATE_0 → NAV_STATE_1 

NAV_STATE_1 → NAV_STATE_2 
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NAV_STATE_2 → NAV_STATE_3 

NAV_STATE_3 → NAV_STATE_0 

Here we have defined the last transition to take us back to the starting state which 

therefore causes the whole state machine to repeat the cycle.  If instead we want the 

robot to stop after navigating the square just once, we can define another state  

NAV_STATE_4 to have the same goal pose as NAV_STATE_0 and then change the             

last transition above to: 

NAV_STATE_3 → NAV_STATE_4 

We could then terminate the machine (and therefore stop the robot) by adding a final 

transition to the empty state: 

NAV_STATE_4 → '' 

In SMACH, the transitions depend on the outcome of the previous state.  In the case of our 

robot moving between locations, the outcome can be "succeeded", "aborted" or 

"preempted". 

These ideas are implemented in the script patrol_smach.py found in the 

rbx2_tasks/nodes directory.  To save space, we won't display the entire listing but 

will focus on the key sections instead.  (You can click on the script name above to go to 

the online listing or bring up the script in your own editor.) 

In the import block near the top of the scrip, we need to bring in the SMACH objects we 

want to use: 

from smach import StateMachine from smach_ros import 
SimpleActionState, IntrospectionServer 

Will we need the StateMachine object to build the overall state machine, the 

SimpleActionState to wrap our calls to move_base and the 

IntrospectionServer so we can  use the smach_viewer. 

As you know from the online tutorial, the SimpleActionState type allows us to wrap 

a regular ROS action into a SMACH state.  Assuming we have already assigned the corner 

poses to a Python list called waypoints, the block of code that turns these poses into 

simple action states looks like this: 
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 nav_states = list() 

 for waypoint in waypoints:                
nav_goal = MoveBaseGoal() 
     nav_goal.target_pose.header.frame_id = 'map'      
nav_goal.target_pose.pose = waypoint 

     move_base_state = smach_ros.SimpleActionState('move_base', MoveBaseAction, 

goal=nav_goal, exec_timeout=rospy.Duration(10.0))      

nav_states.append(move_base_state) 

First we create an empty list called nav_states to hold our navigation states, one for 

each corner of the square.  Next, we loop through each of the waypoints, creating a 

standard MoveBaseGoal using that waypoint as the desired pose.  We then turn this 

goal into a SMACH state using the statement: 

    move_base_state = smach_ros.SimpleActionState('move_base', MoveBaseAction, 

goal=nav_goal, exec_timeout=rospy.Duration(10.0)) 

where we have used the SimpleActionState state type to wrap the  

MoveBaseAction action  into a state.  The SimpleActionState class constructor 

takes the action topic name as the first argument and the action type as the second 

argument.  It also supports the keyword arguments goal and exec_timeout for 

specifying the goal of the action and the time we are willing to wait for it to be achieved 

(10 seconds in the case above.)  Finally, we append the state to the nav_states list. 

The predefined outcomes for a SimpleActionState are  succeeded, aborted or 

preempted.  The next step is to construct the overall state machine using these 

outcomes and states: 

 # Initialize the state machine 
 self.sm_patrol = StateMachine(outcomes=['succeeded','aborted','preempted']) 

 # Add the states to the state machine with the appropriate transitions  with 
self.sm_patrol: 
     StateMachine.add('NAV_STATE_0', nav_states[0],  
transitions={'succeeded':'NAV_STATE_1','aborted':'NAV_STATE_1'}) 
     StateMachine.add('NAV_STATE_1', nav_states[1],  
transitions={'succeeded':'NAV_STATE_2','aborted':'NAV_STATE_2'}) 
     StateMachine.add('NAV_STATE_2', nav_states[2],  
transitions={'succeeded':'NAV_STATE_3','aborted':'NAV_STATE_3'}) 
     StateMachine.add('NAV_STATE_3', nav_states[3], 
transitions={'succeeded':'NAV_STATE_0','aborted':'NAV_STATE_0'}) 

First we initialize our patrol state machine with possible outcomes 'succeeded', 

'aborted' and 'preempted'.  The actual outcome will be determined by the states we 

add to the state machine and what outcomes they produce when executed. 
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Next, we add each navigation state to the state machine together with a dictionary of 

transitions from outcomes to the next state.  The first argument in each line is an 

arbitrary name we assign to the state so that the transitions have something to refer to.  

By convention, these state names are written in upper case.  For example, the first line 

above adds the state nav_states[0] to the state machine and gives it the name 

NAV_STATE_0.  The transitions for this state tells us that if the state succeeds (the robot 

makes it to the goal location), we want the next state to be NAV_STATE_1 which is 

defined on the second line and represents the second goal pose stored in the state 

nav_states[1].     

Note how we also map the outcome 'aborted' to the next state.  While this is optional 

and not always desired, it works nicely with MoveBase goals since the base planner 

might not always succeed in getting the robot to the current goal due to obstacles or time 

constraints.  In such cases, the outcome would be aborted and instead of simply 

stopping the robot, we continue on to the next goal. 

Note also how the final state transition returns to the first state, NAV_STATE_0.  In this 

case, the state machine and the robot will continue to loop around the square 

indefinitely.  If we want the robot to stop after the first loop, we can create the following 

state machine instead: 

 with self.sm_patrol: 
     StateMachine.add('NAV_STATE_0', nav_states[0],  
transitions={'succeeded':'NAV_STATE_1','aborted':'NAV_STATE_1'}) 
     StateMachine.add('NAV_STATE_1', nav_states[1],  
transitions={'succeeded':'NAV_STATE_2','aborted':'NAV_STATE_2'}) 
     StateMachine.add('NAV_STATE_2', nav_states[2],  
transitions={'succeeded':'NAV_STATE_3','aborted':'NAV_STATE_3'}) 
     StateMachine.add('NAV_STATE_3', nav_states[3],  
transitions={'succeeded':'NAV_STATE_4','aborted':'NAV_STATE_4'}) 
     StateMachine.add('NAV_STATE_4', nav_states[0], 
transitions={'succeeded':'','aborted':''}) 

The final state NAV_STATE_4 is assigned the same pose state as the starting point and 

we map both outcomes into the empty state thus terminating the state machine and 

stopping the robot.  The script patrol_smach.py implements this version of the state 

machine but places the execution in a loop that enables us to control the number of times 

the robot completes its patrol as we show next. 

To execute the state machine, we use the loop: 

 while self.n_patrols == -1 or self.patrol_count < self.n_patrols: 
     sm_outcome = self.sm_patrol.execute()      
self.patrol_count += 1 
     rospy.loginfo("FINISHED PATROL NUMBER: " + str(self.patrol_count)) 
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The parameter self.n_patrols is defined in our task_setup.py file which in turn 

reads it from the ROS parameter server with a default value of 3.  (We use the special 

value of -1 if we want the robot to loop forever.)  The counter self.patrol_count is 

also defined in task_setup.py and is initialized to 0. 

On each pass through the loop, we run self.sm_patrol.execute().  The 

execute()method sets the state machine in motion.  If the machine terminates, as it 

does after the final state transition above, then the overall outcome for the state machine 

will be available in the variable sm_outcome. 

Note that, unlike a regular script, we cannot simply place a while loop around the 

actual states of our state machine since that would result in looping through the 

construction of the states before they are even run.   

We will also tend to add the following pair of lines to most of our scripts: 

 intro_server = IntrospectionServer('nav_square', self.sm_patrol, '/SM_ROOT')  

intro_server.start() 

The SMACH Introspection server enables us to view the running state machine in the 

graphical smach_viewer utility as we will see below. 

 3.8.3  Testing SMACH navigation in the ArbotiX simulator 

Let's try it out the patrol_smach.py script using the ArbotiX simulator. 

First, run the fake_turtlebot.launch file in the rbx2_tasks package.  This file 

will bring up a fake TurtleBot, a move_base action server with a blank map and the 

fake battery simulator with a default runtime of 60 seconds, although we won't be using 

the battery for this example: 

$ roslaunch rbx2_tasks fake_turtlebot.launch 

Next, terminate any running instances of RViz, then bring it up with the nav_tasks 

config file: 

$ rosrun rviz rviz -d `rospack find rbx2_tasks`/nav_tasks.rviz 

Make sure you can see the  RViz window in the foreground, then run the 

patrol_smach.py script: 

$ rosrun rbx2_tasks patrol_smach.py 
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You should see the robot move around the square three times and then stop.  The view in 

RViz should look something like this: 

 

At the same time, you should see the following messages in the terminal you used to 

launch the patrol_smach.py script: 

Starting Tasks 
[INFO] [WallTime: 1378991934.456861] State machine starting in initial state 
'NAV_STATE_0' with userdata:  

[]  
[WARN] [WallTime: 1378991934.457513] Still waiting for action server 'move_base' 
to start... is it running?  
[INFO] [WallTime: 1378991934.680443] Connected to action server 'move_base'.  
[INFO] [WallTime: 1378991934.882364] Success rate: 100.0  
[INFO] [WallTime: 1378991934.882795] State machine transitioning  
'NAV_STATE_0':'succeeded'-->'NAV_STATE_1'  
[INFO] [WallTime: 1378991940.684410] Success rate: 100.0  
[INFO] [WallTime: 1378991940.685345] State machine transitioning  
'NAV_STATE_1':'succeeded'-->'NAV_STATE_2'  
[INFO] [WallTime: 1378991946.487312] Success rate: 100.0  
[INFO] [WallTime: 1378991946.487737] State machine transitioning  
'NAV_STATE_2':'succeeded'-->'NAV_STATE_3'  
[INFO] [WallTime: 1378991952.102620] Success rate: 100.0  
[INFO] [WallTime: 1378991952.103259] State machine transitioning  
'NAV_STATE_3':'succeeded'-->'NAV_STATE_4'  
[INFO] [WallTime: 1378991957.705305] Success rate: 100.0  
[INFO] [WallTime: 1378991957.705821] State machine terminating  
'NAV_STATE_4':'succeeded':'succeeded'  
[INFO] [WallTime: 1378991957.706164] State Machine Outcome: succeeded [INFO] 

[WallTime: 1378991958.514761] Stopping the robot...  
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Here we see that SMACH reports when each state transition occurs and also the final 

outcome of the state machine as a whole.  The lines that report the "Success rate" is 

something extra created by our patrol_smach.py script that we will examine in more 

detail in the next section. 

We can also see a graph of the running state machine by using the smach_viewer.py 

utility.  To fire up the viewer, open another terminal and run: 

$ rosrun smach_viewer smach_viewer.py 

Now run the patrol_smach.py script again: 

$ rosrun rbx2_tasks patrol_smach.py 

The display in the SMACH viewer should look something like this: 
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As the robot moves from state to state (i.e. moves from location to location around the 

square), you should see the appropriate state highlighted in green in the viewer.  For a 

complete description of the SMACH viewer GUI, see the smach_viewer Wiki page. 

 3.8.4  Accessing results from a SimpleActionState 

In our current state machine we decided to move on to the next state even if the current 

transition had to be aborted.  But it might be useful to keep a count of how often a goal 

was successful.  For example, if this were a patrol robot and the success rate fell below 

some threshold, then we might suspect that something was wrong with the robot or that 

something was getting in its way. 

The SMACH SimpleActionState constructor allows us to assign a callback function to 

obtain the result of the action.  The syntax looks like this: 

     move_base_state = SimpleActionState('move_base', MoveBaseAction, 
goal=nav_goal, result_cb=self.move_base_result_cb) 

Note how we use the keyword result_cb to assign a function to handle the result.  Our 

move_base_result_cb function then looks like this: 
 def move_base_result_cb(self, userdata, status, result):      
if status == actionlib.GoalStatus.SUCCEEDED: 
         self.n_succeeded += 1      elif status 
== actionlib.GoalStatus.ABORTED: 
         self.n_aborted += 1      elif status == 
actionlib.GoalStatus.PREEMPTED:          
self.n_preempted += 1 

     try:          rospy.loginfo("Success rate: " + str(100.0 * 

self.n_succeeded / (self.n_succeeded + self.n_aborted  + 

self.n_preempted)))      except:          pass 

The callback function takes three arguments: the current userdata (which we will 

explore more later on), as well as the status and result returned by the underlying 

ROS action (in this case, move_base).  As it turns out, the move_base action does not 

use the result field.  Instead, it places the results in the status field which is why our 

test condition above checks the value of the status field. 

As you can see from the above code, our callback simply increments the counters for the 

number of move_base attempts that are successful, aborted or preempted.  We also 

print out the percent success so far. 
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 3.8.5  SMACH Iterators 

In the patrol_smach.py script, we repeated the patrol by placing the machine 

execution inside a while loop.  We will now show how we can accomplish the same 

result using the SMACH Iterator container.  The new script is called 

patrol_smach_iterator.py and can be found in the rbx2_tasks/nodes 

directory.  Since most of the script is the same as patrol_smach.py, we will only 

highlight the differences. 

The key lines of code in the program are as follows: 

 # Initialize the top level state machine 
 self.sm = StateMachine(outcomes=['succeeded','aborted','preempted']) 

 with self.sm: 
     # Initialize the iterator 
     self.sm_patrol_iterator = Iterator(outcomes =  
                                  ['succeeded','preempted','aborted'], 
                                  input_keys = [], 
                                  it = lambda: range(0, self.n_patrols), 
                                  output_keys = [],                                   
it_label = 'index', 
                                  exhausted_outcome = 'succeeded')          
with self.sm_patrol_iterator: 
         # Initialize the patrol state machine          
self.sm_patrol = StateMachine(outcomes = 
['succeeded','aborted','preempted','continue']) 

        # Add the states to the state machine with the appropriate transitions         
with self.sm_patrol:             
            StateMachine.add('NAV_STATE_0', nav_states[0],  
transitions={'succeeded':'NAV_STATE_1','aborted':'NAV_STATE_1','preempted':'NAV_ 
STATE_1'}) 
            StateMachine.add('NAV_STATE_1', nav_states[1],  
transitions={'succeeded':'NAV_STATE_2','aborted':'NAV_STATE_2','preempted':'NAV_ 
STATE_2'}) 
            StateMachine.add('NAV_STATE_2', nav_states[2],  
transitions={'succeeded':'NAV_STATE_3','aborted':'NAV_STATE_3','preempted':'NAV_ 
STATE_3'}) 
            StateMachine.add('NAV_STATE_3', nav_states[3],  
transitions={'succeeded':'NAV_STATE_4','aborted':'NAV_STATE_4','preempted':'NAV_ 
STATE_4'}) 
            StateMachine.add('NAV_STATE_4', nav_states[0],  
transitions={'succeeded':'continue','aborted':'continue','preempted':'continue'} 
) 

         
        # Close the sm_patrol machine and add it to the iterator 
        Iterator.set_contained_state('PATROL_STATE', self.sm_patrol, 
loop_outcomes=['continue']) 
     
    # Close the top level state machine  
    StateMachine.add('PATROL_ITERATOR', self.sm_patrol_iterator,  
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{'succeeded':'succeeded', 'aborted':'aborted'}) 

Let's now break this down. 
 # Initialize the top level state machine 
 self.sm = StateMachine(outcomes=['succeeded','aborted','preempted']) 

 with self.sm: 
     # Initialize the iterator 
     self.sm_patrol_iterator = Iterator(outcomes = 
                                  ['succeeded','preempted','aborted'], 
                                  input_keys = [], 
                                  it = lambda: range(0, self.n_patrols), 
                                  output_keys = [],                                   
it_label = 'index', 
                                  exhausted_outcome = 'succeeded') 

After initializing the top level state machine, we construct an Iterator that will loop 

self.n_patrols times.  The core of the Iterator is the it argument that is set to a 

list of objects to be iterated over.  In our case, we define the list using the Python 

lambda function to create a list of integers over the range(0, self.n_patrols).  
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The it_label argument (set to 'index' in our case) holds the current value of the key 

as it iterates over the list.  The exhausted_outcome argument sets the outcome to emit 

when the Iterator has reached the end of its list. 

    with self.sm_patrol_iterator: 
        # Initialize the patrol state machine 
        self.sm_patrol = 
StateMachine(outcomes=['succeeded','aborted','preempted','continue']) 

        # Add the states to the state machine with the appropriate transitions         
with self.sm_patrol:             
            StateMachine.add('NAV_STATE_0', nav_states[0],  
transitions={'succeeded':'NAV_STATE_1','aborted':'NAV_STATE_1','preempted':'NAV_ 
STATE_1'}) 
            StateMachine.add('NAV_STATE_1', nav_states[1],  
transitions={'succeeded':'NAV_STATE_2','aborted':'NAV_STATE_2','preempted':'NAV_ 
STATE_2'}) 
            StateMachine.add('NAV_STATE_2', nav_states[2],  
transitions={'succeeded':'NAV_STATE_3','aborted':'NAV_STATE_3','preempted':'NAV_ 
STATE_3'}) 
            StateMachine.add('NAV_STATE_3', nav_states[3],  
transitions={'succeeded':'NAV_STATE_4','aborted':'NAV_STATE_4','preempted':'NAV_ 
STATE_4'}) 
            StateMachine.add('NAV_STATE_4', nav_states[0],  
transitions={'succeeded':'continue','aborted':'continue','preempted':'continue'}

 ) 

Next we create the patrol state machine as we have done before with two differences.  

First, the state machine is tucked inside the "with self.sm_patrol_iterator" 

statement.  Second, we have added a new outcome labeled 'continue' to both the 

overall patrol machine and the final state, NAV_STATE_4.  Why we do this will become 

clear in the final lines below. 

        Iterator.set_contained_state('PATROL_STATE', self.sm_patrol,  
loop_outcomes=['continue']) 

     
    # Close the top level state machine  
    StateMachine.add('PATROL_ITERATOR', self.sm_patrol_iterator,  
{'succeeded':'succeeded', 'aborted':'aborted'}) 

The first line above adds the patrol state machine to the Iterator as the contained state 

and sets the loop_outcomes parameter  to 'continue'.  This means that when the 

contained state machine emits an outcome of 'continue', the Iterator will move to 

the next value in its list.  As you can see from our patrol state machine, NAV_STATE_4 

maps all outcomes to 'continue', so the Iterator will start the next cycle once we 

have completed NAV_STATE_4.  If the Iterator reaches the end of its list, it will 
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terminate with an outcome set by the exhausted_outcomes parameter which we set 

to 'succeeded' when constructing the Iterator. 

The final line adds the Iterator as a state in the overall state machine. 

To test the script, make sure you have the fake TurtleBot up and running as in the 

previous sections as well as RViz with the nav_tasks.rviz config file, then run the 

iterator script: 

$ rosrun rbx2_tasks patrol_smach_iterator.py 

The result should be the same as before: the robot should make two complete patrols of 

the square. 

 3.8.6  Executing commands on each transition 

Suppose that we want the robot to execute one or more functions each time it transitions 

from one state to the next.  For example, perhaps we want the patrol robot to scan for 

people in each room and if it sees someone, says hello and then continues. 

This type of execution can be accomplished using a transition callback function.  Our 

demo script is called patrol_smach_callback.py located in the directory 

rbx2_tasks/nodes.  The majority of the script is the same as the patrol_smach.py 

script described earlier so we will only highlight the differences. 

First we set the transition callback on the state machine as follows: 

   self.sm_patrol.register_transition_cb(self.transition_cb, cb_args=[]) 

The register_transition_cb() function takes two arguments: the callback 

function that we want to execute, and a list of callback arguments, which can just be an 

empty list as we have used here.  Our callback function, self.transition_cb() then 

looks like this: 

  def transition_cb(self, userdata, active_states, *cb_args):       if 
self.rand.randint(0, 3) == 0: 
          rospy.loginfo("Greetings human!") 
          rospy.sleep(1) 
          rospy.loginfo("Is everything OK?")           

rospy.sleep(1)       else:           
rospy.loginfo("Nobody here.") 
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Here we have simply pretended to check to the presence of a person by randomly 

selecting a number between 0 and 3.  If it comes up 0, we emit a greeting, otherwise, we 

report that no one is present.  Of course, in a real application, you might include code 

that scans the room by panning the robot's camera and uses text-to-speech to speak to 

talk to someone if they are detected. 

To test the script, make sure you have the fake TurtleBot up and running as in the 

previous sections as well as RViz with the nav_tasks.rviz config file, then run the 

iterator script: 

$ rosrun rbx2_tasks patrol_smach_callback.py 

Unlike the previous scripts, this one will run indefinitely until you abort it with Ctrl-C. 

 3.8.7  Interacting with ROS topics and services 

Suppose we want to monitor the robot's battery level and if it falls below a certain 

threshold, the robot should pause or abort what it is doing, navigate to the docking 

station and recharge, then continue the previous task where it left off.  To begin, we need 

to know how to use SMACH to monitor the battery level.  Let's use the fake battery 

simulator introduced earlier to illustrate the process. 

SMACH provides the pre-defined states MonitorState and ServiceState to interact 

with ROS topics and services from within a state machine.  We'll use a MonitorState 

to track the simulated battery level and a ServiceState to simulate a recharge.  Before 

integrating the battery check into our Patrol Bot state machine, let's look at a simpler 

state machine that simply monitors the battery level and then issues a recharge service 

call when the level falls below threshold. 

The demo script is called monitor_fake_battery.py script in the 

rbx2_tasks/nodes directory and looks like the following. 

Link to source: monitor_fake_battery.py 
1 #!/usr/bin/env python 
2 
3 import rospy 
4 from smach import State, StateMachine 
5 from smach_ros import MonitorState, ServiceState, IntrospectionServer 
6 from rbx2_msgs.srv import * 
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False) 

'~low_battery_threshold', 50) 

# Add a MonitorState to subscribe to the battery level topic 

 

# Add a ServiceState to simulate a recharge using the set_battery_level 

, sm_battery_monitor, 
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58 main() 
59 except rospy.ROSInterruptException: 

60 rospy.loginfo("Battery monitor finished.") 

Let's break down the key lines of the script. 
4 from smach import State, StateMachine 
5 from smach_ros import MonitorState, ServiceState, IntrospectionServer 
6 from rbx2_msgs.srv import * 
7 from std_msgs.msg import Float32 

In addition to the usual State and StateMachine objects, we also import 

MonitorState and ServiceState from smach_ros.  Since the service we will be 

connecting to (set_battery_level) lives in the rbx2_msgs package, will import all 

service definitions from there.  Finally, since the battery level is published using the 

Float32 message type, we also import this type from the ROS std_msgs package. 

16 self.low_battery_threshold = rospy.get_param('~low_battery_threshold', 50) 

The low_battery_threshold is read in as a ROS parameter with a default of 50 

under the assumption that 100 is fully charged. 

19 sm_battery_monitor = StateMachine(outcomes=[]) 

We create a top-level state machine called sm_battery_monitor and assign it an 

empty outcome since it won't actually yield a result on its own. 

21 with sm_battery_monitor: 
22 # Add a MonitorState to subscribe to the battery 

level topic 
23 StateMachine.add('MONITOR_BATTERY', 
24 MonitorState('battery_level', Float32, 

self.battery_cb),  
25 transitions={'invalid':'RECHARGE_BATTERY', 
26 'valid':'MONITOR_BATTERY', 
27 'preempted':'MONITOR_BATTERY'},) 

The first state we add to the state machine is called MONITOR_BATTERY and it uses the  

SMACH  MonitorState to keep tabs on the battery level.  The arguments to the 

MonitorState constructor are the topic we want to monitor, the message type for that 

topic and a callback function (here called self.battery_cb) that is described below.  

The key names in the transitions dictionary come from the pre-defined outcomes for the 

MonitorState type which are valid, invalid and preempted although the valid 

and invalid outcomes are actually represented by the values True and False, 
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respectively.  In our case, our callback function will use the invalid outcome to mean 

that the battery level has fallen below threshold so we map this key to a transition to the 

RECHARGE_BATTERY state described next. 

30 StateMachine.add('RECHARGE_BATTERY', 
31 ServiceState('battery_simulator/set_battery_leve

l',  
SetBatteryLevel, request=100),  
32 transitions={'succeeded':'MONITOR_BATTERY', 
33 'aborted':'MONITOR_BATTERY', 
34 'preempted':'MONITOR_BATTERY'}) 

The second state we add to the state machine is the RECHARGE_BATTERY state that uses 

the SMACH ServiceState.  The arguments to the ServiceState constructor are the 

service name, the service type, and the request value to send to the service.  The 

SetBatteryLevel service type is set in the rbx2_msgs package which is why we 

imported rbx2_msgs.srv at the top of our script.  Setting the request value to 100 

essentially performs a simulated recharge of the battery to full strength.  The 

ServiceState returns the traditional outcomes of succeeded, aborted and 

preempted.  We map all outcomes back to the MONITOR_BATTERY state. 

The final part of the script that requires explaining is the callback function for our 

MonitorState: 

35 def battery_cb(self, userdata, msg): 
36 rospy.loginfo("Battery Level: " + str(msg)) 37     

if msg.data < self.low_battery_threshold: 38         

return False 39     else: 
40         return True 

Any callback function assigned to a MonitorState state automatically receives the 

messages being published to the topic being subscribed to and the state's userdata.  In 

this callback, we will only make use of the topic messages (passed in as the msg 

argument) and not the userdata argument. 

Recall that the messages we are monitoring are simple Float32 numbers representing 

the charge level of the simulated battery.  The first line of the battery_cb function 

above simply displays the level to the screen.  We then test the level against the 

low_battery_threshold set earlier in the script.  If the current level is below the 

low_battery_threshold, we return False which is the equivalent of invalid 

when it comes to a MonitorState.  Otherwise, we return True which is the same as an 

outcome of valid.  As we saw earlier, when the MONITOR_BATTERY state generates an 
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outcome of invalid via its callback function, it transitions to the RECHARGE_BATTERY 

state. 

Now that we understand the function of the script, let's try it out.  First make sure the 

fake battery is running.  If you still have the fake_turtlebot.launch file running 

from previous sections, that will work.  Otherwise, you can launch the fake battery on its 

own: 

$ roslaunch rbx2_utils battery_simulator.launch 

Then fire up the monitor_fake_battery.py script: 

$ rosrun rbx2_tasks monitor_fake_battery.py 

You should then see a series of message similar to the following: 

[INFO] [WallTime: 1379002809.494314] State machine starting in initial state 
'MONITOR_BATTERY' with userdata:  

[]  
[INFO] [WallTime: 1379002812.213581] Battery Level: data: 70.0  
[INFO] [WallTime: 1379002813.213005] Battery Level: data: 66.6666641235  
[INFO] [WallTime: 1379002814.213802] Battery Level: data: 63.3333320618  
[INFO] [WallTime: 1379002815.213758] Battery Level: data: 60.0  
[INFO] [WallTime: 1379002816.213793] Battery Level: data: 56.6666679382  
[INFO] [WallTime: 1379002817.213799] Battery Level: data: 53.3333320618  
[INFO] [WallTime: 1379002818.213819] Battery Level: data: 50.0  
[INFO] [WallTime: 1379002819.213816] Battery Level: data: 46.6666679382  
[INFO] [WallTime: 1379002819.219875] State machine transitioning  
'MONITOR_BATTERY':'invalid'-->'RECHARGE_BATTERY'  
[INFO] [WallTime: 1379002819.229251] State machine transitioning  
'RECHARGE_BATTERY':'succeeded'-->'MONITOR_BATTERY'  
[INFO] [WallTime: 1379002820.213889] Battery Level: data: 100.0  
[INFO] [WallTime: 1379002821.213805] Battery Level: data: 96.6666641235 
[INFO] [WallTime: 1379002822.213807] Battery Level: data: 93.3333358765 
etc 

The first INFO message above indicates that the state machine is initialized in the 

MONITOR_STATE state.  The next series of lines shows a count down of the battery level 

which is the result of our rospy.loginfo() statements in the battery_cb function 

describe earlier.  When the level falls below threshold, we see the MONITOR_STATE  

returns an outcome of invalid which triggers a state transition to the 

RECHARGE_BATTERY state.  Recall that the RECHARGE_STATE calls the 

set_battery_level service and sets the battery level back to 100.  It then returns an 

outcome of succeeded which triggers a state transition back to MONITOR_STATE.  The 

process then continues indefinitely. 
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 3.8.8  Callbacks and Introspection 

One of the strengths of SMACH is the ability to determine the state of the machine at any 

given time and to set callbacks on state transitions or termination.  For example, if a 

given state machine is preempted, we might want to know the last state it was in before 

it was interrupted.  We will use this feature in the next section to determine where to 

continue the patrol after a recharge.  We can also use introspection to improve on the 

way we track the success rate:  instead of simply keeping a count of the number of 

waypoints reached, we can actually record the waypoint ID as well. 

You can find details on all possible callbacks from the online SMACH API.  The 

callback we will use most often is fired on each state transition within a given state 

machine.  The callback function itself is set using the register_transition_cb() 

method on the state machine object.  For example, to register a transition callback on 

our patrol state machine in the patrol_smach.py script, we would use the syntax: 

 self.sm_patrol.register_transition_cb(self.patrol_transition_cb, cb_args=[]) 

We would then define the function self.patrol_transition_cb to execute 

whatever code we want on each state transition: 

 def patrol_transition_cb(self, userdata, active_states, *cb_args):      
Do something awesome with userdata, active_states or cb_args 

Here we see that a transition callback always has access to userdata, active_states 

and any callback arguments that were also passed.  In particular, the variable 

active_states holds the current state of the state machine and we will use this in the 

next section to determine where the robot was when it was interrupted to recharge its 

battery. 

 3.8.9  Concurrent tasks: Adding the battery check to the patrol routine 

Now that we know how to patrol the square and check the battery, it is time to put the 

two together.  We want a low battery signal to take top priority so that the robot stops its 

patrol and navigates to the docking station.  Once recharged, we want the robot to 

continue its patrol beginning with the last waypoint it was heading for before being 

interrupted. 

SMACH provides the Concurrence container for running tasks in parallel and enabling 

one task to preempt the other when a condition is met.  So we will set up our new state 

machine with a Concurrence container which will hold the navigation machine and 
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the battery check machine.  We will then set up the container so that the battery check 

can preempt navigation when the battery level falls below threshold. 

Before looking at the code, let's try it out.  Terminate the monitor_battery.py node 

if it is still running from an earlier session.  (It may take a while to respond to Ctrl-C 

before the node eventually dies.)   

If the fake_turtlebot.launch file is not already running, bring it up now.  Recall 

that this file also launches the fake battery simulator with a 60 second battery runtime: 

$ roslaunch rbx2_tasks fake_turtlebot.launch 

If you don't already have it running, bring up the SMACH viewer with the command: 

$ rosrun smach_viewer smach_viewer.py 

Bring up RViz with the nav_tasks config file if it is not already running: 

$ rosrun rviz rviz -d `rospack find rbx2_tasks`/nav_tasks.rviz 

Finally, make sure you can see the  RViz window in the foreground, then run the 

patrol_smach_concurrence.py script: 

$ rosrun rbx2_tasks patrol_smach_concurrence.py 

You should see the robot move around the square two times and then stop. Whenever the 

battery falls below threshold (set by default to 50 in the task_setup.py file), the 

robot will interrupt its patrol and head to the docking station for a recharge.  Once 

recharged, it will continue its patrol where it left off. 

While the script is running, you can also view the state machine in the SMACH viewer.   

The image should look something like the following: 
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(If you don't see this image in the SMACH viewer, shut it down then bring it back up 

again.)  The image on your screen should be much clearer than we can reproduce here.  

The larger gray box on the left represents the concurrence container that contains the 

navigation state machine SM_NAV inside the inner box and the monitor state  

MONITOR_BATTERY that subscribes to the battery topic.  The smaller green box on the 

right represents the RECHARGE state machine and contains the NAV_DOCKING_STATION 

and RECHARGE_BATTERY states.  The transitions between the two state machines can be 

seen more clearly in the magnified image below: 
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The arcing arrow from the red recharge outcome on the left to the green RECHARGE 

box on the right indicates the transition from the concurrence container to the RECHARGE 

state machine when the concurrence produces the 'recharge' outcome. 

Let us now examine the code that makes this work.  The following is a summary of the 

overall steps: 

• create a state machine called sm_nav that takes care of moving the robot from 

one waypoint to the next 

• create a second state machine called sm_recharge that moves the robot to the 

docking station and performs a recharge 

• create a third state machine called sm_patrol defined as a Concurrence 

container that pairs the sm_nav state machine with a MonitorState state that 

subscribes to the battery topic and can preempt the sm_nav machine while 

firing up the sm_recharge state machine 

• finally, create a fourth state machine called sm_top that includes the 

sm_patrol and sm_recharge machines as well as a STOP state that allows us 
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to terminate the entire patrol once we have completed the specified number of 

loops. 

The tree diagram of our state machine looks like this: 

• sm_top 

◦ sm_patrol 

▪ monitor_battery 

▪ sm_nav 

◦ sm_recharge 

The full script can be found in the file patrol_smach_concurrence.py in the 

directory rbx2_tasks/nodes. 

Link to source:  patrol_smach_concurrence.py 

The top half of the script is the same as the patrol_smach.py script without the 

battery check.  So let's look now at the lines that bring in the docking station and the 

battery check. 

 # Create a MoveBaseAction state for the docking station 
 nav_goal = MoveBaseGoal() 
 nav_goal.target_pose.header.frame_id = 'map'  nav_goal.target_pose.pose = 
self.docking_station_pose 
 nav_docking_station = SimpleActionState('move_base', MoveBaseAction, 
        goal=nav_goal, result_cb=self.move_base_result_cb,         exec_timeout = 

rospy.Duration(20.0),         server_wait_timeout=rospy.Duration(10.0)) 

As with the four navigation waypoints, we create a SimpleActionState wrapping a 

move_base action that gets the robot to the docking station.  The location of the 

docking station on the map (self.docking_station_pose) is set in our setup file 

task_setup.py included at the top of program. 

 self.sm_nav.register_transition_cb(self.nav_transition_cb, cb_args=[]) 

Next we register a callback function on the sm_nav state machine that fires on a state 

transition. The callback function looks like this: 

 def nav_transition_cb(self, userdata, active_states, *cb_args):      
self.last_nav_state = active_states 
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As you can see, the function simply stores the last active state in the variable 

self.last_nav_state.  This will allow us to continue the patrol where we left off  

after the robot completes a recharge. 

Next, let's look at the various state machine definitions in the reverse order that they 

appear in the script.  This is because SMACH defines hierarchical state machines in terms 

of component state machines that are constructed beforehand.  However, in terms of 

understanding the script, we tend to think from top to bottom in the hierarchy. 

The top level state machine sm_top looks like this: 
 # Create the top level state machine 
 self.sm_top = StateMachine(outcomes=['succeeded', 'aborted', 'preempted']) 

         
 # Add nav_patrol, sm_recharge and Stop() machines to sm_top  
with self.sm_top: 
     StateMachine.add('PATROL', self.nav_patrol,  
          transitions={'succeeded':'PATROL','recharge':'RECHARGE',  
                       'stop':'STOP'}) 
     StateMachine.add('RECHARGE', self.sm_recharge,            
transitions={'succeeded':'PATROL'}) 
     StateMachine.add('STOP', Stop(), transitions={'succeeded':''}) 

Here we see that the overall state machine is composed of three component state 

machines: the nav_patrol machine labeled 'PATROL', the sm_recharge machine 

called 'RECHARGE' and a functionally defined state machine labeled 'STOP'.  

Furthermore, the transition table for the nav_patrol machine indicates that an 

outcome of 'succeeded' should lead back to the PATROL state while an outcome of 

'recharge' should transition to the RECHARGE state and an outcome of 'stop' should 

fire up the STOP state.  The RECHARGE state has only one transition defined which is to 

return to the PATROL state if the recharge outcome is 'succeeded'.  Finally, the STOP 

state transitions to an empty state thereby terminating the entire state machine. 

Let's now break down each of these component states and state machines.  The last state 

labeled STOP is defined earlier in the script and looks like this: 
 class Stop(State):      
def __init__(self): 
         State.__init__(self, 
outcomes=['succeeded','aborted','preempted'])          pass          def 
execute(self, userdata):          rospy.loginfo("Shutting down the state 
machine") 
         return 'succeeded' 

Here we create a SMACH state that simply prints out a message and returns 'succeeded'.  

It's only function is to give us a state we can transition to when we are finished all 

patrols. 
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The RECHARGE state is another state machine called sm_recharge that is defined as 

follows: 

 with self.sm_recharge: 
     StateMachine.add('NAV_DOCKING_STATION', nav_docking_station,          
transitions={'succeeded':'RECHARGE_BATTERY'}) 
     StateMachine.add('RECHARGE_BATTERY',  
         ServiceState('battery_simulator/set_battery_level', SetBatteryLevel,  
         100, response_cb=self.recharge_cb), transitions={'succeeded':''}) 

The first state gets the robot to the docking station using the nav_docking_station  

SimpleActionState and the second state simulates a recharge by using a SMACH  

ServiceState to call the set_battery_level service with a value of 100 (full 

charge). 

Finally, the PATROL state is defined by the nav_patrol state machine that looks like 

this: 
 self.nav_patrol = Concurrence(outcomes=['succeeded', 'recharge', 'stop'],       
default_outcome='succeeded',  
      
child_termination_cb=self.concurrence_child_termination_cb,       
outcome_cb=self.concurrence_outcome_cb)                           
with self.nav_patrol: 
     Concurrence.add('SM_NAV', self.sm_nav) 
     Concurrence.add('MONITOR_BATTERY', MonitorState("battery_level", Float32,  
            self.battery_cb)) 

Here we have defined the nav_patrol state machine as a SMACH Concurrence 

container.  In this case, the Concurrence includes the navigation state machine and a 

SMACH MonitorState that subscribes to the battery_level topic.  This sets up the 

nav_patrol machine to move the robot around the square while monitoring the battery 

level. 

The MonitorState state takes three arguments: the topic we want to subscribe to, the 

message type for that topic, and a callback function that gets called whenever a message 

is received on the subscribed topic.  In other words, it wraps a standard ROS subscribe 

operation.   In our case, the callback function, self.battery_cb looks like this: 
 def battery_cb(self, userdata, msg):      if 
msg.data < self.low_battery_threshold:          
self.recharging = True 
         return False      
else:          self.recharging 
= False 
         return True 



 

 Task Execution using ROS - 44 

Here we see that the callback function returns False if the battery level falls below 

threshold or True otherwise.  We also set a flag to indicate whether or not we are 

recharging so we won't count recharging against the overall navigation success rate. 

The final question is: how does a low battery level condition preempt the current 

navigation task, start the recharge task, then resume the previous navigation task?  You'll 

notice that the Concurrence container defines two callback functions: the 

child_termination_cb that which fires when either child state terminates; and the 

outcome_cb callback that fires when all child states have terminated.  Let's look at 

these in turn. 
 def concurrence_child_termination_cb(self, outcome_map):      
# If the current navigation task has succeeded, return True      
if outcome_map['SM_NAV'] == 'succeeded':         return True 
     # If the MonitorState state returns False (invalid), store the current nav  
goal and recharge      if outcome_map['MONITOR_BATTERY'] == 'invalid':          

rospy.loginfo("LOW BATTERY! NEED TO RECHARGE...")          if 

self.last_nav_state is not None:              

self.sm_nav.set_initial_state(self.last_nav_state, UserData())          

return True      else:          return False 

The child termination callback fires when either the sm_nav machine or the battery 

MonitorState returns so we have to check for either condition.  The outcome map is 

indexed by the name of the state machines that make up the Concurrence container 

which in our case are SM_NAV and MONITOR_BATTERY.  So first we check the status of 

the SM_NAV machine and if it has succeeded (i.e. the robot just made it to a waypoint) 

we return True.  Otherwise, we check the status of the battery monitor state.  Recall that 

a MonitorState maps True into  valid and False into invalid.  If we see an 

outcome of invalid (the battery has fallen below threshold), we reset the initial state of 

the sm_nav machine to be the last successful navigation goal and return True. 

The outcome callback is executed when both the sm_nav machine and the  

MonitorState have terminated.  In our case, the callback function looks like this: 

 def concurrence_outcome_cb(self, outcome_map):      # If the battery is below 
threshold, return the 'recharge' outcome      if outcome_map['MONITOR_BATTERY'] 
== 'invalid':          return 'recharge'      # Otherwise, if the last nav goal 
succeeded, return 'succeeded' or 'stop'      elif outcome_map['SM_NAV'] == 
'succeeded':          self.patrol_count += 1 
         rospy.loginfo("FINISHED PATROL LOOP: " + str(self.patrol_count)) 
         # If we have not completed all patrols, start again at the beginning 
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         if self.n_patrols == -1 or self.patrol_count < self.n_patrols:              
self.sm_nav.set_initial_state(['NAV_STATE_0'], UserData()) 
             return 'succeeded'          # Otherwise, we are finished 
patrolling so return 'stop'          else:              
self.sm_nav.set_initial_state(['NAV_STATE_4'], UserData()) 
             return 'stop'      

# Recharge if all else fails      

else:          return 'recharge' 

As with the child termination callback, we test the outcome map for each of the  

Concurrence states.  In this case we test the MONITOR_BATTERY outcome first and if it 

is invalid (the battery is low), we return an outcome of 'recharge'.  Recall that in our 

top-level state machine, this outcome will cause a transition to the RECHARGE state 

which in turn is defined by the sm_recharge state machine that will move the robot to 

the docking station.  Otherwise, we test the outcome of the SM_NAV state and, if it 

returns 'succeeded', meaning we have a arrived at a waypoint, we then test to see if we 

have finished the designated number of patrols and can stop or keep patrolling. 

 3.8.10  Comments on the battery checking Patrol Bot 

If you are not used to programming state machines, the previous section might have 

seemed a little cumbersome just to get the robot to navigate a square while checking its 

battery level.  And indeed, for such a simple case, writing a standard declarative script as 

we did earlier would probably be easier.  State machines tend to show their strength 

when the problem becomes more complex.  Nonetheless, state machines are not for 

everyone and we will look at another approach later on. 

 3.8.11  Passing user data between states and state machines 

The SMACH Wiki includes a tutorial describing how to pass user data from one state to 

another or between the state machine as a whole and any given state.  For example, 

suppose we would like the Patrol Bot to pick the next waypoint randomly rather than 

always moving in the same sequence.  This would make the robot less predictable to a 

potential intruder.  One way to do this is to create a state that selects the next waypoint 

at random and then passes the result to a navigation state that does the actual moving of 

the robot to the selected location.  Before we write a script to do exactly this, let's review 

the essential concepts from the one tutorial linked to above. 

The key to SMACH data passing is the userdata object that is essentially a Python 

dictionary that maps input_keys and output_keys to states (and state machines) and 

each other.  Any state (or machine) that needs to output the value of a variable must list 

that variable among its output_keys.  Likewise, a state that requires a variable as 
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input must include that variable in its input_keys.  When constructing the state 

machine, a remapping argument provides a dictionary mapping input and output keys to 

and from intermediary keys that allow the data to be passed between states. The tutorial 

linked to above provides a few detailed examples.  We will now show how these 

concepts can be used to produce a random Patrol Bot. 

Our new script is called random_patrol_smach.py and is located in the 

rbx2_tasks/nodes directory.  The core of the state machine is embodied in the 

following lines: 

 # Initialize the patrol state machine 
 self.sm_patrol = StateMachine(outcomes=['succeeded','aborted','preempted']) 

 # Set the userdata.waypoints variable to the pre-defined waypoints  
self.sm_patrol.userdata.waypoints = self.waypoints 

 # Add the states to the state machine with the appropriate transitions  with 
self.sm_patrol:             
     StateMachine.add('PICK_WAYPOINT', PickWaypoint(),                       
transitions={'succeeded':'NAV_WAYPOINT'},                       
remapping={'waypoint_out':'patrol_waypoint'}) 

     
     StateMachine.add('NAV_WAYPOINT', Nav2Waypoint(),                       
transitions={'succeeded':'PICK_WAYPOINT',                                    
'aborted':'PICK_WAYPOINT',  
                                   'preempted':'PICK_WAYPOINT'},                       
remapping={'waypoint_in':'patrol_waypoint'}) 

Let's take each line in turn: 

 self.sm_patrol = StateMachine(outcomes=['succeeded','aborted','preempted']) 

Here we create the overall patrol state machine as usual with the standard set of 

outcomes. 

 self.sm_patrol.userdata.waypoints = self.waypoints 

To make the pre-defined set of waypoints available to the state machine and any states 

we subsequently add to it, we assign the array to a userdata variable.  This variable 

can have any name you like but it makes sense to simply call it waypoints in this case. 

 with self.sm_patrol:             
     StateMachine.add('PICK_WAYPOINT', PickWaypoint(),                       
transitions={'succeeded':'NAV_WAYPOINT'},                       
remapping={'waypoint_out':'patrol_waypoint'}) 



 

 Task Execution using ROS - 47 

The first state we add is called PICK_WAYPOINT and consists of the custom state 

PickWaypoint() that we will describe later.  This state will select a waypoint at 

random and return it an the output variable called waypoint_out.  To make this 

variable available to other states, we use a remapping dictionary to map it into an 

intermediary variable called patrol_waypoint.  This variable can be any name as 

long the same name is used with other states that needs to use the variable as we shall 

see next. 

  StateMachine.add('NAV_WAYPOINT', Nav2Waypoint(),                   
transitions={'succeeded':'PICK_WAYPOINT',                                
'aborted':'PICK_WAYPOINT',  
                               'preempted':'PICK_WAYPOINT'},                   
remapping={'waypoint_in':'patrol_waypoint'}) 

Next we add the second state which we call NAV_WAYPOINT and represents the custom 

state Nav2Waypoint() which will be defined below.  As we will see, this state looks 

for a data variable named waypoint_in that tells the state where to navigate the robot.  

Note that we don't pass this variable to Nav2Waypoint() as an argument; instead, we 

use a remapping dictionary for the state that maps the intermediary 

patrol_waypoint variable to the waypoint_in. 

The last two pieces to examine are the custom states PickWaypoint() and 

Nav2Waypoint().  Here is the PickWaypoint() code: 
 class PickWaypoint(State):      
def __init__(self): 
         State.__init__(self, outcomes=['succeeded'], 
input_keys=['waypoints'], output_keys=['waypoint_out'])          def 
execute(self, userdata):            waypoint_out = 
randrange(len(userdata.waypoints)) 
         
         userdata.waypoint_out = waypoint_out 

         
         rospy.loginfo("Going to waypoint " + str(waypoint_out)) 

     
         return 'succeeded' 

As you can see, this state has two arguments defining a set of input_keys and 

output_keys.  For this state, there is only one input_key called 'waypoints' and 

one output_key called 'waypoint_out'.  The execute() function automatically gets 

passed the userdata object as an argument.  So first we pick a random number from 0 

to the length of the userdata.waypoints array, then we assign it to the 

userdata.waypoint_out variable. 

Finally, let's look at the Nav2Waypoint() state: 
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 class Nav2Waypoint(State):      
def __init__(self): 
         State.__init__(self, outcomes=['succeeded','aborted','preempted'],                         
input_keys=['waypoints', 'waypoint_in']) 
         
         # Subscribe to the move_base action server 
         self.move_base = actionlib.SimpleActionClient("move_base",  
MoveBaseAction) 

         
         # Wait up to 60 seconds for the action server to become available 
         self.move_base.wait_for_server(rospy.Duration(60))     

         
         rospy.loginfo("Connected to move_base action server") 

         
         self.goal = MoveBaseGoal() 
         self.goal.target_pose.header.frame_id = 'map' 

     def execute(self, userdata):          self.goal.target_pose.pose = 
userdata.waypoints[userdata.waypoint_in] 
     
         # Send the goal pose to the MoveBaseAction 
server          self.move_base.send_goal(self.goal)                  
if self.preempt_requested():              
self.service_preempt()              return 'preempted' 
         
         # Allow 1 minute to get there          
finished_within_time =  
self.move_base.wait_for_result(rospy.Duration(60))  

         
         # If we don't get there in time, abort the goal          
if not finished_within_time: 
             self.move_base.cancel_goal() 
             rospy.loginfo("Timed out achieving 
goal")              return 'aborted'          else: 
             # We made it!              state = 
self.move_base.get_state()              if state 
== GoalStatus.SUCCEEDED:                  
rospy.loginfo("Goal succeeded!") 
             return 'succeeded' 

In this case, we have two input_keys, 'waypoints' and 'waypoint_in' and no 

output_keys.  In the lines before the execute() function, we simply connect to the 

move_base action server as we have done in the past.  The execute() function sets 

the goal pose from the userdata.waypoints array using the value of 

userdata.waypoint_in as the index into the array.  The rest of the function simply 

sends that goal to the move_base action server, waits for the result and returns 

'succeeded', 'preempted' or 'aborted' as appropriate. 

To try out the script, run the following commands.  If you don't already have the fake 

TurtleBot running, bring it up now: 
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$ roslaunch rbx2_tasks fake_turtlebot.launch 

Similarly, if the SMACH viewer is not running, fire it up with: 

$ rosrun smach_viewer smach_viewer.py 

If you don't already have RViz running with the nav_tasks config file, bring it up 

with:  

$ rosrun rviz rviz -d `rospack find rbx2_tasks`/nav_tasks.rviz 

Finally, make sure you can see the  RViz window in the foreground, then run the 

random_patrol_smach.py script: 

$ rosrun rbx2_tasks random_patrol_smach.py 

You should see the robot move randomly from waypoint to waypoint indefinitely. 

For bonus credit, the reader is encouraged to write a new script that combines the 

random patrol with the battery check using a SMACH Concurrence container. 

 3.8.12  Subtasks and hierarchical state machines 

As we have seen, SMACH enables us to nest state machines inside each other.  This 

allows us to break down a complex set of goals into primary tasks and subtasks.  For 

example, a house cleaning robot might be programmed to navigate from one room to the 

next while carrying out a number of subtasks specific to each room.  The procedure 

might go something like this: 

• START_LOCATION → LIVING_ROOM 

• VACCUM_FLOOR → DUST_FURNITURE → CLEAN_WINDOWS 

• LIVING_ROOM → KITCHEN 

• MOP_FLOOR → DO_DISHES 

• KITCHEN → BATHROOM 

• WASH_TUB → MOP_FLOOR 

• BATHROOM → HALLWAY 

Each subtask could itself have subtasks such as: 

• MOP_FLOOR  
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• RETRIEVE_MOP → WASH_FLOOR → RINSE_MOP → STORE_MOP 

SMACH makes it relatively easy to build and visualize these more complex state 

machines.  The trick is to create a separate state machine for each subtask which then 

becomes a state in the parent state machine. 

Let's program an imaginary house cleaning robot as an example.  Suppose that each 

corner of our navigation square represents a room and we want the robot to perform one 

or more cleaning tasks in each room before moving on to the next room. 

We will let the corners of the square represent the living room, kitchen, bathroom and 

hallway.  In the living room, the robot will vacuum the carpet; in the kitchen, it will mop 

the floor; and in the bathroom it will both scrub the tub and mop the floor.  For 

illustrative purposes, we will also use the easygui utility to create some pop-up 

messages along the way and allow the user to control when the robot moves to the next 

room. 

Our script can be found in the file clean_house_smach.py in the 

rbx2_tasks/nodes subdirectory.  Before looking at the code, let's try it out in the 

simulator. 

If the fake_turtlebot.launch file is not already running, bring it up now: 

$ roslaunch rbx2_tasks fake_turtlebot.launch 

Next, bring up the SMACH viewer with the command: 

$ rosrun smach_viewer smach_viewer.py 

If you don't already have RViz running with the nav_tasks config file, fire it up now:  

$ rosrun rviz rviz -d `rospack find rbx2_tasks`/nav_tasks.rviz 

Finally, make sure you can see the  RViz window in the foreground, then run the 

clean_house_smach.py script: 

$ rosrun rbx2_tasks clean_house_smach.py 

You should see the robot move from room to room and perform various cleaning tasks.  

You can also watch the progress in graphical form in the smach_viewer window.  As 

each cleaning task is completed, a pop-up window will appear.  Click OK to allow the 

robot to continue. (The pop-up windows are created by the easygui Python module 

and are used just to illustrate how we can call other programs from within a state 
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machine.) As the robot moves through the state machine, the image in the 

smach_viewer.py should look something like the following: 

 

The clean_house_smach.py script is fairly straightforward so we'll highlight just the 

key concepts.  The most important concept in the script is the construction of a 

hierarchical state machine.  First, we create a state machine for each room like this: 
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 # Create a state machine for the kitchen task(s) 
 sm_living_room = StateMachine(outcomes=['succeeded','aborted','preempted']) 

         
 # Then add the subtask(s)  
with sm_living_room: 
      StateMachine.add('VACUUM_FLOOR', VacuumFloor('living_room', 5),  
transitions={'succeeded':'','aborted':'','preempted':''}) 

Here we create a state machine for the living room and then add a state called 

VACUUM_FLOOR.  This state is defined in terms of a custom class VacuumFloor() 

which we will describe in detail below. 

One we have a state machine for each room containing the various cleaning tasks, we 

put them together into the overall state machine as follows: 
        # Initialize the overall state machine 
        sm_clean_house =  
StateMachine(outcomes=['succeeded','aborted','preempted']) 

             
        # Build the clean house state machine         
with sm_clean_house:             
            StateMachine.add('START', nav_states['hallway'],  
transitions={'succeeded':'LIVING_ROOM','aborted':'LIVING_ROOM','preempted':'LIVI 
NG_ROOM'}) 

             
            ''' Add the living room subtask(s) ''' 
            StateMachine.add('LIVING_ROOM', nav_states['living_room'],  
transitions={'succeeded':'LIVING_ROOM_TASKS','aborted':'KITCHEN','preempted':'KI 
TCHEN'}) 

             
            # When the tasks are done, continue on to the kitchen 
            StateMachine.add('LIVING_ROOM_TASKS', sm_living_room,  
transitions={'succeeded':'KITCHEN','aborted':'KITCHEN','preempted':'KITCHEN'}) 

             
            ''' Add the kitchen subtask(s) ''' 
            StateMachine.add('KITCHEN', nav_states['kitchen'],  
transitions={'succeeded':'KITCHEN_TASKS','aborted':'BATHROOM','preempted':'BATHR 
OOM'}) 

             
            # When the tasks are done, continue on to the bathroom 
            StateMachine.add('KITCHEN_TASKS', sm_kitchen,  
transitions={'succeeded':'BATHROOM','aborted':'BATHROOM','preempted':'BATHROOM'} 
) 

             
            ''' Add the bathroom subtask(s) ''' 
            StateMachine.add('BATHROOM', nav_states['bathroom'],  
transitions={'succeeded':'BATHROOM_TASKS','aborted':'HALLWAY','preempted':'HALLW 
AY'}) 

             
            # When the tasks are done, return to the hallway             
StateMachine.add('BATHROOM_TASKS', sm_bathroom,  
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transitions={'succeeded':'HALLWAY','aborted':'HALLWAY','preempted':'HALLWAY'})    

             
            ''' Add the hallway subtask(s) ''' 

            StateMachine.add('HALLWAY', nav_states['hallway'], 
transitions={'succeeded':'HALLWAY_TASKS','aborted':'','preempted':''}) 

             
            # When the tasks are done, stop 
            StateMachine.add('HALLWAY_TASKS', sm_hallway, 
transitions={'succeeded':'','aborted':'','preempted':''})          

The construction of the clean_house state machine reads somewhat like a list of 

chores: 

• Add a state called START that navigates state the robot to the hallway, then 

transition to a state called LIVING_ROOM. 



 

 Task Execution using ROS - 54 

• Add a state called LIVING_ROOM that navigates the robot to the living room and 

once there, transitions to a state called LIVING_ROOM_TASKS. 

• Add a state called LIVING_ROOM_TASKS that points to the sm_living_room 

state machine.  Recall that the sm_living_room state machine contains the 

VACUUM_FLOOR state and when this subtask succeeds, so does the 

sm_living_room state so add a transition to a state called KITCHEN. 

• Add a state called KITCHEN that navigates the robot to the kitchen and once 

there, transition to a state called KITCHEN_TASKS 

• etc. 

With the overall state machine constructed, we can later add tasks to any of the 

individual room state machines without having to modify other parts of the code.  For 

example, the bathroom state machine actually has two subtasks: 

        with sm_bathroom: 
            StateMachine.add('SCRUB_TUB', ScrubTub('bathroom', 7),  
transitions={'succeeded':'MOP_FLOOR'}) 
            StateMachine.add('MOP_FLOOR', MopFloor('bathroom', 5), 
transitions={'succeeded':'','aborted':'','preempted':''}) 

Here the SCRUB_TUB state transitions to the MOP_FLOOR state but both states are 

contained within the sm_bathroom state machine.  So we only need to add the 

sm_bathroom state machine once to the overall sm_clean_house machine.  In this 

way, hierarchical state machines allow us to break down large tasks into logical subunits 

that can then be nested together. 

Let's now turn to the simulated cleaning tasks themselves.  Recall that we added the 

VACUUM_FLOOR state to the sm_living_room state machine using the following line 

of code: 

      StateMachine.add('VACUUM_FLOOR', VacuumFloor('living_room', 5), 
transitions={'succeeded':'','aborted':'','preempted':''}) 

Here we have used SMACH's ability to define a state in terms of another class defined 

elsewhere in the script.  As you will recall from running the simulation in the ArbotiX 

simulator, each "cleaning task" is represented by some scripted motions of the robot that 

are meant to look like that action.  So we need a state that can essentially run arbitrary 

code to produce this kind of behavior. 
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SMACH enables us to extend the generic State class and override the default execute() 

function with whatever code we like.  The code below defines the custom state class 

used in the clean_house_smach.py script to represent the VaccumFloor state: 
 class VacuumFloor(State):      def 
__init__(self, room, timer): 
         State.__init__(self, outcomes=['succeeded','aborted','preempted']) 

         
         self.task = 'vacuum_floor' 
         self.room = room          
self.timer = timer 
         self.cmd_vel_pub = rospy.Publisher('cmd_vel', Twist) 

     def execute(self, userdata):          rospy.loginfo('Vacuuming 
the floor in the ' + str(self.room)) 
         cmd_vel_msg = Twist()          
cmd_vel_msg.linear.x = 0.05          
counter = self.timer          while 
counter > 0:              if 
self.preempt_requested():                  
self.service_preempt()                  
return 'preempted' 
             self.cmd_vel_pub.publish(cmd_vel_msg) 
             cmd_vel_msg.linear.x *= -1              
rospy.loginfo(counter) 
             counter -= 1              
rospy.sleep(1) 
         
         self.cmd_vel_pub.publish(Twist()) 
         message = "Finished vacuuming the " + str(self.room) + "!"          
rospy.loginfo(message) 
         easygui.msgbox(message, title="Succeeded") 

         
         update_task_list(self.room, self.task)          

return 'succeeded' 

The VaccumState state takes a room name and timer as arguments.  We then call the 

__init__() function on the generic State object and define two possible outcomes: 

succeeded and preempted.  The generic State object assumes the callback function 

is called execute() which in turns receives the standard argument called userdata 

that we will explore in the next section.   Otherwise, we are free to run nearly any code 

we want here as long as we return one of the outcomes listed earlier. 

In the example above, we use a cmd_vel publisher to move the robot back and forth 

while counting down the timer.  Note how we also check for a preempt request using 

the preempt_requested() function which is inherited from the State object.   If a 

preempt request is received, the state stops what it is doing and returns the outcome 

preempted. 
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If the execute() function is allowed to proceed all the way to the end, the global 

function update_task_list() is used to check this task off the list of chores and an 

outcome of succeeded is returned.  We also use the easygui module to display a 

popup message that has to be clicked before the robot will continue.  Simply comment 

out this line if you want the robot to perform the task without interruption. 

The other "cleaning" tasks such as Mop and Scrub are defined in a similar manner in the 

clean_house_smach.py script. 

 3.8.13  Adding the battery check to the house cleaning robot 

Using the patrol_smach_concurrence.py script as a guide, it is left to the reader to 

modify the clean_house_smach.py script using a Concurrence container so that 

the robot also checks its battery level and recharges when necessary. 

 3.8.14  Drawbacks of state machines 

If you are not already an experienced state machine programmer, the process of putting 

one together might appear a little tedious.  Large state machines can become somewhat 

difficult to construct and their state diagrams can sometimes appear difficult to follow 

such as the one below for plugging in the PR2: 
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However, some robot tasks are just inherently complex and programming such tasks is 

never going to be easy.  In the next section, we will look at an alternative approach that 

might seem easier to work with for those without a background in state machines. 
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 3.9  Behavior Trees 

We have seen how to program a complex set of robot behaviors using state machines 

and SMACH.  An alternate approach, called behavior trees, has been gaining popularity 

among programmers of computer games, and more recently, in robotics as well (e.g.  

BART).  Perhaps not surprisingly, programming an animated character in a game is not 

unlike programming a robot to carry out a series of tasks.  Both must handle a set of 

unpredictable inputs and choose from a variety of behaviors appropriate to the task at 

hand as well as the current situation.  (NOTE: The Wikipedia entry for behavior trees 

refers to a unrelated topic related to graphical modeling used in systems and software 

engineering.) 

 3.9.1  Behavior Trees versus Hierarchical State Machines 

In the early days of game programming, developers tended to use hierarchical state 

machines similar to SMACH.  The main difficulty with state machines is keeping track of 

all the transitions between states.  Adding a new state or behavior to a character (or 

robot) requires not only coding the new state itself but also adding the transitions 

between all related states.  Before long, the state diagram of the game begins to look a 

little like tangled spaghetti which can make it difficult to understand and debug. 

Although behavior trees are superficially similar to hierarchical state machines, the 

modularity of their components and the simplicity of their connections make them 

especially easy to program and understand even when dealing with complex games or 

behaviors.  Here is a behavior tree representation of our Patrol Bot's behavior: 

 

Behavior trees break down complex tasks by branching them into a set of conditions and 

subtasks.  The tree is always executed from top to bottom and left to right.  For a given 

level of the tree, nodes on the left have higher priority than nodes on the right.  In the 

tree shown above, this means that the STAY_HEALTHY branch of the tree will always be 

run before the PATROL branch.  Similarly, the CHECK_BATTERY task will always be 

executed before the RECHARGE behavior. 
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Behaviors or conditions higher in the tree are more abstract such as "stay healthy" while 

those at lower levels are more concrete such as "navigate to the docking station".  In 

fact, only the terminal nodes in each branch of the tree result in actual behavior.  

Terminal nodes are also known as "leaf nodes" and are colored red in the diagram above.  

We might also refer to them as "action nodes".  The blue nodes are called "interior 

nodes" and represent sequences or other composite behaviors as we shall see below. 

The most important distinction between behavior trees and hierarchical state machines is 

that there are never direct links between behaviors on the same level of the tree: any 

connection between such "sibling" behaviors can only be indirect by virtue of shared 

links to higher-level behaviors. For example, in the SMACH version of the house cleaning 

robot we programmed earlier, the tasks "clean tub" and "mop floor" in the bathroom 

state machine connect directly together via transitions such as "when the tub is clean, 

start mopping the floor".   This kind of lateral connection can never occur in a behavior 

tree.  This means that individual behaviors can be treated as independent modules and 

can be moved around the tree without having to worry about breaking lateral 

connections with other behaviors. 

 3.9.2  Key properties of behavior trees 

The key features of behavior trees can be summarized as follows: 

• Nodes represent tasks and conditions rather than states.  The terms "task" and 

"behavior" will be used interchangeably.  As will see later on, checking a 

condition can be thought of as just another kind of task. 

• A task or behavior is generally a piece of code that runs for one or more cycles 

and produces a result of either SUCCESS or FAILURE. If a task takes more than 

one cycle to complete, it will have a status of RUNNING before returning its 

result.  A task's current status is always passed up to its parent task in the tree. 

• Tasks or behaviors can also represent composite behaviors whose status depends 

on two or more child behaviors.  The two most commonly used composite 

behaviors are selectors and sequences. 

◦ A selector attempts to execute its first child behavior and if it succeeds, the 

selector also succeeds.  Otherwise, the selector attempts to execute the next 

child behavior and so on.  If all child behaviors fail, the selector also fails. 

In this way, a selector is like a problem solver: first try one solution and if 

that fails, try the next solution, and so on.  
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◦ A sequence attempts to run all of its child tasks one after the other.  If any 

child task fails, then the sequence fails.  If the sequence is executed without 

failure all the way to the last child behavior, then the sequence succeeds. 

• When a task has more than one subtask, the subtasks are prioritized based on 

their list order; i.e. from left to right in a standard tree diagram or from top to 

bottom if using a bulleted list.  This property works as a kind of built-in 

subsumption architecture with no additional coding necessary. 

• The connections between behaviors are always parent-to-child and never 

sibling-to-sibling.  This follows directly from the structure of a tree and it allows 

us to move a node—or even a whole subtree—from one part of the tree and 

attach it somewhere else without changing any other connections.  Such 

alterations can even be done at run time.  This kind of modularity is one of the 

most valuable features of behavior trees. 

• The execution of a behavior tree always begins at the root node and proceeds in 

depth-first order beginning with the left most branch.  When a given node is run, 

the result (SUCCESS, FAILURE or RUNNING) is passed up to its parent.  Only 

leaf nodes result directly in the production of a behavior or the checking of a 

condition.  Interior nodes are used to direct the flow of processing to their child 

nodes using selectors and sequences.  An  important property of behavior trees 

is that execution begins again at the root of the tree on every "tick" of the clock. 

This ensures that any change in the status of higher priority behaviors will result 

in the appropriate change in execution flow even if other nodes are already 

running. 

• Behaviors can be augmented with decorators that modify the results of the 

behavior.  For example, we might want to execute a sequence of subtasks but 

ignore failures so that the sequence continues through to the end even when 

individual subtasks do not succeed.  For this we could use an "ignore failure" 

decorator that turns a result of FAILURE into SUCCESS for the task it decorates.  

We will see an example of this in the next section where we revisit the Patrol 

Bot scenario. 

• Many behavior trees make use of a global "black board" that can store data 

about the environment as well as the results of earlier behaviors.  Individual 

nodes can read and write to the black board. 

For a nice series of diagram of this process, see the illustration on this blog entry by 

Bjoern Knafla. 
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 3.9.3  Building a behavior tree 

Constructing a behavior tree can be done either from the top down or from the bottom 

up or even some combination of the two.  It is often easier to begin with the root node 

and work our way down, beginning with the more abstract composite behaviors and then 

adding the more concrete conditions and action tasks. 

For the Patrol Bot example, the root node will have two composite child behaviors: 

STAY_HEALTHY and PATROL.  Using a bulleted list, we can represent our tree so far like 

this: 

• BEHAVE (root) 

• STAY_HEALTHY • PATROL 

where we have used the label BEHAVE for the root node. 

Note that the priority of a child behavior is determined by its order in the list since we 

will always run through the child nodes in list order.  So in this case, the  

STAY_HEALTHY behavior has a higher priority than the PATROL behavior.  After all, if 

we let the battery run down, the robot will not be able to continue its patrol. 

Next, let's flesh out these two high level behaviors.  The STAY_HEALTHY task will 

consist of two child tasks: CHECK_BATTERY and RECHARGE.  It could also include 

checking servos for overheating, or watching for excessive current to the drive motors 

(perhaps the robot is stuck on something).  The PATROL task will navigate to the four 

corners of a square using four child tasks.  So the behavior tree now looks like this: 

• BEHAVE 

• STAY_HEALTHY 

• CHECK BATTERY 

• RECHARGE 

• PATROL 

• NAV_0 • NAV_1 • NAV_2 

• NAV_3 

Once again, list order is important.  For example, we want to check the battery before 

we decide to recharge, and we want to patrol the corners of the square in a particular 

order. 

Finally, the RECHARGE task consists of two child behaviors: navigating to the docking 

station and charging the robot.   So our final behavior tree looks like this: 
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• BEHAVE 

• STAY_HEALTHY 

• CHECK BATTERY 

• RECHARGE 

• NAV_DOCK 

• CHARGE 

• PATROL 

• NAV_0 • NAV_1 • NAV_2 

• NAV_3 

With our basic tree structure in place, all that is left is to describe the relationships 

between layers in the tree; i.e. between parent tasks and their child tasks.  Let's turn to 

that next. 

 3.9.4  Selectors and sequences 

As we learned earlier, behavior trees use two basic types of composite behaviors: 

selectors and sequences. A selector tries each of its subtasks in turn until one succeeds 

whereas a sequence executes each of its child behaviors until one of them fails.  So 

selectors and sequences essentially complement one another.  Surprisingly, these two 

types of parent-child relationships, together with a few variations, are almost all we need 

to generate very complex robot behaviors.  To see how, let's look at them in more detail. 

A selector starts by executing the first task among its child nodes and, if the task 

succeeds, the selector's status is also set to SUCCESS and all other child tasks are 

ignored.  However, if the first subtask fails, the selector's status is also set to FAILURE 

and the next subtask in its list is executed.  In this way, the selector picks a single 

behavior from its collection of child behaviors, always moving in list order; i.e. from left 

to right if referring to a tree diagram or top to bottom if using a bulleted list.  We can 

therefore think of a selector as a simple kind of "problem solver".  Beginning with its 

highest priority sub-behavior, it tries each "solution" until one succeeds or until it runs 

out of behaviors, in which case it passes a final FAILURE result up to its parent which is 

then left to deal with the situation.  (More on that later.)  

The STAY_HEALTHY behavior in our example is a relatively simple selector.  First we 

run the CHECK_BATTERY task and if it returns SUCCESS (the battery is OK), we pass 

this result to the parent task which then also has a status of SUCCESS and we are done.  

If however the CHECK_BATTERY task returns FAILURE (the battery level is low), we 

move on to the RECHARGE task which attempts to remedy the problem by navigating to 
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the docking station and charging the robot.  One could also add a NOTIFY behavior so 

that if the RECHARGE task fails, the robot could call for help using text-to-speech or alert 

a human via email. 

A sequence also starts with the first behavior in its list of subtasks but this time, if the 

task succeeds, the next subtask in the list is executed.  The process continues until either 

a subtasks fails or we run out of subtasks.  If the entire sequence is completed, a status 

of SUCCESS is passed to the parent task.  However, if the sequence is cut short because a 

subtask fails, then FAILURE is returned up the tree. 

Note that the top level BEHAVE behavior for our Patrol Bot should be a sequence: if the 

STAY_HEALTHY sub-task fails (which happens when the CHECK_BATTERY tasks fails) 

then the sequence fails and we don't move on to the PATROL task. 

At first glance, it seems we would use a sequence for the PATROL task since we want the 

robot to navigate from one waypoint to the next.  However, what happens if the robot is 

unable to get to one of the waypoints for some reason?  Perhaps that location is currently 

inaccessible due to an obstacle.  A sequence would fail at this point since one of its 

subtasks has failed.  This is often the desired result.  For example, if we are mixing the 

ingredients for a cake and half way through we find we are out of eggs, we should 

probably stop mixing until we do some shopping.  However, for a Patrol Bot, we might 

prefer that the robot continue on to the next waypoint rather than aborting the entire 

patrol.  With a slight modification of the sequence composite behavior, we can produce 

the desired behavior as we shall see next. 

 3.9.5  Customizing behaviors using decorators (meta-behaviors) 

As we have just seen, selectors and sequences are not always enough to produce the 

behavior we need from our robot.  There are a number of ways we can add greater 

flexibility to a behavior tree including the use of so-called "decorators".  We will use the 

term "decorator" or "meta-behavior" rather loosely to refer to a behavior or function 

whose only role is to modify the result of another behavior or task. 

For our first example, consider the IgnoreFailure meta-behavior which modifies its 

child behavior(s) by returning SUCCESS even if the original result is FAILURE.  The 

IgnoreFailure meta-behavior is just what we need to make our patrol sequence work 

the way we want by using it to modify each waypoint NAV task.  Our behavior tree now 

looks like this: 

• BEHAVE 

• STAY_HEALTHY 
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• CHECK BATTERY 

• RECHARGE 

• NAV_DOCK 

• CHARGE 

• PATROL 

• IGNORE_FAILURE 

• NAV_0 

• IGNORE_FAILURE 

• NAV_1 

• IGNORE_FAILURE 

• NAV_2 

• IGNORE_FAILURE 

• NAV_3 

Or, in graphical form: 

 

Another way to iterate over a sequence of behaviors while ignoring failures is to simply 

define a new type of sequence with the ignore failure property built in.  The pi_trees 

library includes the Iterator composite behavior that does just that. 

Another commonly used meta-behavior is the Loop decorator which takes a single 

parameter indicating the number of iterations and executes its child behavior(s) the 

specified number of times before terminating.  We could use a Loop decorator around 

our PATROL behavior to limit the number of patrols to a specified number.  

There is nothing stopping you from creating any number of meta-behaviors for use in 

your behavior tree.  Some examples include: 

• limiting the number of times a behavior can be run 

• limiting the frequency at which a behavior can be run by using a timer 
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• temporarily deactivating a behavior 

• a selector that tries the child tasks in random order 

 3.10  Programming with Behavior Trees and ROS 

Since a ready-made behavior tree library for ROS was not available at the time of this 

writing, a new ROS package called pi_trees was created for use with this book.  In 

this section and those that follow, we will install the pi_trees package and learn how 

to use it to program our Patrol Bot and house cleaning robot using behavior trees.   

 3.10.1  Installing the pi_trees library 

Before running the examples that follow, we need to install the pi_trees ROS package 

using the following commands: 

$ sudo apt-get install graphviz-dev libgraphviz-dev \ python-
pygraph python-pygraphviz gv 

$ cd ~/catkin_ws/src 
$ git clone https://github.com/pirobot/pi_trees.git 
$ cd ~/catkin_ws 
$ catkin_make 
$ rospack profile 

That should do it! 

 3.10.2  Basic components of the pi_trees library 

Behavior trees are fairly easy to implement in Python and while there are several 

different approaches one can take, the methods used in the pi_trees package lend 

themselves well to integrating with ROS topics, services and actions.  In fact, the 

pi_trees package was modeled after SMACH so that some of the code might already 

seem familiar. 

The core pi_trees library is contained in the file pi_trees_lib.py in the 

pi_trees/pi_trees_lib/src directory and the ROS classes can be found in the file 

pi_trees_ros.py under the pi_trees/pi_trees_ros/src directory.  Let's start 

with pi_trees_lib.py. 

Link to source: pi_trees_lib.py 

class TaskStatus(): 
    FAILURE = 0 
    SUCCESS = 1 
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    RUNNING = 2 

First we define the possible task status values using the class TaskStatus as a kind of 

enum.  One can include additional status values such as ERROR or UNKNOWN but these 

three seem to be sufficient for most applications. 
class Task(object):     """ "The base Task class """     def 
__init__(self, name, children=None, *args, **kwargs):         
self.name = name         self.status = None                         
if children is None:             children = [] 
             
        self.children = 
children                              
def run(self): 
        pass 

    def reset(self):         
for c in self.children: 
            c.reset() 

    def add_child(self, c):         
self.children.append(c) 

    def remove_child(self, c):         
self.children.remove(c)             
def prepend_child(self, c):         
self.children.insert(0, c) 

    def insert_child(self, c, i):         
self.children.insert(i, c)        
def get_status(self):         
return self.status         def 
set_status(self, s): 
        self.status = s         def 
announce(self):         print("Executing task " 
+ str(self.name)) 
     
    # These next two functions allow us to use the 'with' 

syntax     def __enter__(self):         return self.name         
def __exit__(self, exc_type, exc_val, exc_tb):         if  
exc_type is not None:             return False         return 

True 

The base Task class defines the core object of the behavior tree.  At a minimum it must 

have a name and a run() function that in general will not only perform some behavior 

but also return its status.  The other key functions are add_child() and 
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remove_child() that enable us to add or remove sub-tasks to composite tasks such as 

selectors and sequences (described below).  You can also use the prepend_child() or 

insert_child() functions to add a sub-task with a specific priority relative to the 

other tasks already in the list. 

When creating your own tasks, you will override the run() function with code that 

performs your task's actions.  It will then return an appropriate task status depending on 

the outcome of the action.  This will become clear when we look at the Patrol Bot 

example later on. 

The reset() function is useful when we want to zero out any counters or other 

variables internal to a particular task and its children. 
class Selector(Task):     """         Run each subtask in sequence until one 
succeeds or we run out of tasks. 
    """     def __init__(self, name, *args, **kwargs):         
super(Selector, self).__init__(name, *args, **kwargs)      
def run(self):         for c in self.children: 
             
            c.status = c.run()                         

if c.status != TaskStatus.FAILURE:                 

return c.status         return 

TaskStatus.FAILURE 

A Selector runs each child task in list order until one succeeds or until it runs out of 

subtasks.  Note that if a child task returns a status of RUNNING, the selector also returns 

RUNNING until the child either succeeds or fails. 
class Sequence(Task):     """         Run each subtask in sequence until 
one fails or we run out of tasks. 
    """     def __init__(self, name, *args, **kwargs):         
super(Sequence, self).__init__(name, *args, **kwargs)      
def run(self): 
        for c in self.children: 

             
            c.status = c.run()                                      
if c.status != TaskStatus.SUCCESS:                 
return c.status    
             
        return TaskStatus.SUCCESS 
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A Sequence runs each child task in list order until one succeeds or until it runs out of 

subtasks.  Note that if a child task returns a status of RUNNING, the sequence also returns 

RUNNING until the child either succeeds or fails. 
class Iterator(Task):     """         Iterate through 
all child tasks ignoring failure. 
    """     def __init__(self, name, *args, **kwargs):         
super(Iterator, self).__init__(name, *args, **kwargs)      
def run(self):         for c in self.children: 
             
            c.status = c.run() 

                          
            if c.status != TaskStatus.SUCCESS and c.status !=  
TaskStatus.FAILURE:                 
return c.status 
             
        return TaskStatus.SUCCESS 

An Iterator behaves like a Sequence but ignores failures. 
class ParallelOne(Task):     """         A parallel task runs each child 
task at (roughly) the same time.         The ParallelOne task returns 
success as soon as any child succeeds. 
    """     def __init__(self, name, *args, **kwargs):         
super(ParallelOne, self).__init__(name, *args, **kwargs)                      
def run(self):         for c in self.children: 
            c.status = c.run() 

            if c.status == TaskStatus.SUCCESS: 
                return TaskStatus.SUCCESS 

         
        return TaskStatus.FAILURE 

The key difference between the ParallelOne composite task and a Selector is that 

the ParallelOne task runs all of its tasks on every "tick" of the clock unless (or until) 

one subtask succeeds.  A Selector continues running the first subtask until that task 

either succeeds or fails before moving on to the next subtask or returning altogether. 
class ParallelAll(Task):     """         A parallel task runs each child task 
at (roughly) the same time.         The ParallelAll task requires all subtasks 
to succeed for it to succeed. 
    """     def __init__(self, name, *args, 
**kwargs): 
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        super(ParallelAll, self).__init__(name, *args, 
**kwargs)                      def run(self):         n_success 
= 0 
        n_children = len(self.children) 

        for c in self.children: 
            c.status = c.run()             if 
c.status == TaskStatus.SUCCESS: 
                n_success += 1 

            if c.status == TaskStatus.FAILURE:                 
return TaskStatus.FAILURE 

        if n_success == n_children:             

return TaskStatus.SUCCESS         

else:             return 

TaskStatus.RUNNING 

Similar to the ParallelOne task, the ParallelAll task runs each subtask on each 

tick of the clock but continues until all subtasks succeed or until one of them fails. 
class Loop(Task): 
    """ 
        Loop over one or more subtasks for the given number of iterations         
Use the value -1 to indicate a continual loop. 
    """     def __init__(self, name, announce=True, *args, 
**kwargs): 
        super(Loop, self).__init__(name, *args, **kwargs) 

         
        self.iterations = 
kwargs['iterations']         self.announce = 
announce         self.loop_count = 0         
self.name = name 
        print("Loop iterations: " + str(self.iterations))             def 
run(self):                 while True:             if self.iterations != -1 
and self.loop_count >= self.iterations:                 return 
TaskStatus.SUCCESS                                     for c in 
self.children:                 while True: 
                    c.status = c.run()                                         
if c.status == TaskStatus.SUCCESS:                         
break 

                    return c.status 

                 
                c.reset() 

                 
            self.loop_count += 

1                         if 

self.announce: 

                print(self.name + " COMPLETED " + str(self.loop_count) + " 
LOOP(S)") 
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The Loop task simply executes its child task(s) for the given number of iterations.  A 

value of -1 for the iterations parameters means "loop forever".  Note that a Loop 

task is still a task in its own right. 
class IgnoreFailure(Task):     """         
Always return either RUNNING or SUCCESS. 
    """     def __init__(self, name, *args, **kwargs):         

super(IgnoreFailure, self).__init__(name, *args, **kwargs)      

def run(self):         for c in self.children: 

            c.status = c.run() 

            if c.status != TaskStatus.RUNNING: 
                return 

TaskStatus.SUCCESS             else:                 

return TaskStatus.RUNNING         return 

TaskStatus.SUCCESS 

The IgnoreFailure task simply turns a FAILURE into a SUCCESS for each of its child 

behaviors.  If the status of a child task is RUNNING, the IgnoreFailure also takes on a 

status of RUNNING. 

 3.10.3  ROS-specific behavior tree classes 

You can find the ROS-specific behavior tree classes in the file pi_trees_ros.py in 

the directory pi_trees/pi_trees_ros/src.  This library contains three key ROS 

tasks: the MonitorTask for monitoring a ROS topic; the ServiceTask for connecting 

to a ROS service; and the SimpleActionTask for send goals to a ROS action server 

and receiving feedback.  We will describe these tasks only briefly here as their use will 

become clear in the programming examples that follow. 

Link to source: pi_trees_ros.py 
class MonitorTask(Task):     """         
Turn a ROS subscriber into a Task. 
    """ 
    def __init__(self, name, topic, msg_type, msg_cb, wait_for_message=True, 
timeout=5):         super(MonitorTask, self).__init__(name) 
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        self.topic = topic         
self.msg_type = msg_type         
self.timeout = timeout         
self.msg_cb = msg_cb 
                 
        rospy.loginfo("Subscribing to topic " + topic)                 if 
wait_for_message:             try:                 
rospy.wait_for_message(topic, msg_type, timeout=self.timeout) 
                rospy.loginfo("Connected.")             
except:                 rospy.loginfo("Timed out waiting for " 
+ topic) 
                 
        # Subscribe to the given topic with the given callback function executed 
via run()  
        rospy.Subscriber(self.topic, self.msg_type, 

self._msg_cb)             def _msg_cb(self, msg):         
self.set_status(self.msg_cb(msg))             def run(self):         
return self.status         def reset(self):         pass 

The MonitorTask subscribes to a given ROS topic and executes a given callback 

function.  The callback function is defined by the user and is responsible for returning 

one of the three allowed task status values: SUCCESS, FAILURE or RUNNING. 
class ServiceTask(Task):     """         
Turn a ROS service into a Task. 
    """ 
    def __init__(self, name, service, service_type, request, 
result_cb=None, wait_for_service=True, timeout=5):         
super(ServiceTask, self).__init__(name) 
         
        self.result = None         
self.request = request         
self.timeout = timeout         
self.result_cb = result_cb 
                 
        rospy.loginfo("Connecting to service " + 
service)                 if wait_for_service:             
rospy.loginfo("Waiting for service") 
            rospy.wait_for_service(service, timeout=self.timeout)             
rospy.loginfo("Connected.") 
         
        # Create a service proxy 
        self.service_proxy = rospy.ServiceProxy(service, 

service_type)             def run(self):         try: 
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            result = self.service_proxy(self.request)             
if self.result_cb is not None: 
                self.result_cb(result)             

return TaskStatus.SUCCESS         

except:             

rospy.logerr(sys.exc_info())             

return TaskStatus.FAILURE             

def reset(self):         pass 

The ServiceTask wraps a given ROS service and optionally executes a user-defined 

callback function.  By default, a ServiceTask will simply call the corresponding ROS 

service and return SUCCESS unless the service call itself fails in which case it returns 

FAILURE.  If the user passes in a callback function, this function may simply execute 

some arbitrary code or it may also return a task status. 
class SimpleActionTask(Task):     """         
Turn a ROS action into a Task. 
    """ 
    def __init__(self, name, action, action_type, goal, rate=5, 
connect_timeout=10, result_timeout=30, reset_after=False, 
active_cb=None, done_cb=None, feedback_cb=None):         
super(SimpleActionTask, self).__init__(name) 
         
        self.action = action         
self.goal = goal         self.tick 
= 1.0 / rate         self.rate = 
rospy.Rate(rate) 

        self.result = None 
        self.connect_timeout = 
connect_timeout         self.result_timeout = 
result_timeout         self.reset_after = 
reset_after                 if done_cb == 
None:             done_cb = 
self.default_done_cb 
        self.done_cb = done_cb                 
if active_cb == None:             active_cb = 
self.default_active_cb 
        self.active_cb = active_cb                 
if feedback_cb == None:             feedback_cb = 
self.default_feedback_cb 
        self.feedback_cb = feedback_cb 

                 
        self.action_started = False         
self.action_finished = False         
self.goal_status_reported = False         
self.time_so_far = 0.0 
         
        # Goal state return values 
        self.goal_states = ['PENDING', 'ACTIVE', 'PREEMPTED',  
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                            'SUCCEEDED', 'ABORTED', 'REJECTED', 
                            'PREEMPTING', 'RECALLING', 'RECALLED', 
                            'LOST'] 

     
        rospy.loginfo("Connecting to action " + action) 

        # Subscribe to the base action server 
        self.action_client = actionlib.SimpleActionClient(action, action_type) 

        rospy.loginfo("Waiting for move_base action server...") 

         
        # Wait up to timeout seconds for the action server to become 
available         try:              
self.action_client.wait_for_server(rospy.Duration(self.connect_timeout))         
except:             rospy.loginfo("Timed out connecting to the action server " 
+ action) 
     
        rospy.loginfo("Connected to action server") 

    def run(self):         # Send the goal         if not 
self.action_started:             rospy.loginfo("Sending " + 
str(self.name) + " goal to action  
server...") 
            self.action_client.send_goal(self.goal, done_cb=self.done_cb,  
active_cb=self.active_cb, feedback_cb=self.feedback_cb)             
self.action_started = True  
         
        ''' We cannot use the wait_for_result() method here as it will block             
the entire tree so we break it down in time slices of duration 
            1 / rate. 
        '''         if not 
self.action_finished: 
            self.time_so_far += self.tick             
self.rate.sleep()             if self.time_so_far > 
self.result_timeout:                 
self.action_client.cancel_goal()                 
rospy.loginfo("Timed out achieving goal")                 return 
TaskStatus.FAILURE             else:                 return 
TaskStatus.RUNNING         else:             # Check the final goal 
status returned by default_done_cb             if self.goal_status 
== GoalStatus.SUCCEEDED:                   self.action_finished = 
True                   if self.reset_after: 
                      self.reset()                   
return TaskStatus.SUCCESS             elif 
self.goal_status == GoalStatus.ABORTED:                 
self.action_started = False                 
self.action_finished = False                 return 
TaskStatus.FAILURE             else:                 
self.action_started = False                 
self.action_finished = False                 
self.goal_status_reported = False 
                return TaskStatus.RUNNING 
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                                def 
default_done_cb(self, status, result): 
        # Check the final status         self.goal_status = 
status         self.action_finished = True              if not 
self.goal_status_reported:             
rospy.loginfo(str(self.name) + " ended with status " +  
str(self.goal_states[status])) 
            self.goal_status_reported = 
True         def default_active_cb(self):         
pass             def 
default_feedback_cb(self, msg): 
        pass         def reset(self):         
self.action_started = False         
self.action_finished = False         
self.goal_status_reported = False 
        self.time_so_far = 0.0 

The SimpleActionTask mimics the SimpleActionState defined in SMACH.  Its 

main function is to wrap a ROS simple action client and therefore takes an action name, 

action type, and a goal as arguments.  It can also take arguments specifying user-defined 

callback functions for the standard active_cb, done_cb and feedback_cb callbacks 

that are passed to the ROS simple action client.  In particular, the SimpleActionTask 

defines default done_cb function reports the final status of the action which is then 

turned into a corresponding task status to be used in the rest of the behavior tree. 

We will examine the SimpleActionTask more closely in the context of a number of 

example programs that we turn to next. 

 3.10.4   A Patrol Bot example using behavior trees 

We have already seen how we can use SMACH to program a robot to patrol a series of 

waypoints while monitoring its battery level and recharging when necessary.  Let's now 

see how we can do the same using the pi_trees package. 

Our test program is called patrol_tree.py and is located in the rbx2_tasks/nodes 

subdirectory.  Before looking at the code, let's try it out. 

Begin by bringing up the fake TurtleBot, blank map, and fake battery simulator: 

$ roslaunch rbx2_tasks fake_turtlebot.launch 

Next, bring up RViz with the nav_tasks.rviz config file: 
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$ rosrun rviz rviz -d `rospack find rbx2_tasks`/nav_tasks.rviz 

Finally, run the patrol_tree.py script: 

$ rosrun rbx2_tasks patrol_tree.py 

The robot should make two loops around the square, stopping to recharge when 

necessary, then stop.  Let's now look at the code. 

Link to source: patrol_tree.py 

1 #!/usr/bin/env python 
2 
3 import rospy 
4 from std_msgs.msg import Float32 
5 from geometry_msgs.msg import Twist 
6 from rbx2_msgs.srv import * 
7 from pi_trees_ros.pi_trees_ros import * 
8 from rbx2_tasks.task_setup import * 
9 
10 class Patrol(): 
11 def __init__(self): 
12 rospy.init_node("patrol_tree") 13 
14 # Set the shutdown function (stop the robot) 
15 rospy.on_shutdown(self.shutdown) 
16         
17 # Initialize a number of parameters 

and variables 
18 setup_task_environment(self) 19 
20 # Create a list to hold the move_base tasks 
21 MOVE_BASE_TASKS = list() 
22         
23        n_waypoints = len(self.waypoints) 
24         
25        # Create simple action navigation task for each waypoint 26        

for i in range(n_waypoints + 1): 
27 goal = MoveBaseGoal() 
28 goal.target_pose.header.frame_id = 'map' 
29 goal.target_pose.header.stamp = rospy.Time.now() 
30 goal.target_pose.pose = self.waypoints[i % n_waypoints] 
31             
32            move_base_task) = SimpleActionTask("MOVE_BASE_TASK_" + str(i), 
"move_base", MoveBaseAction, goal) 
33             
34            MOVE_BASE_TASKS.append(move_base_task) 
35         
36 # Set the docking station pose 
37 goal = MoveBaseGoal() 
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38 goal.target_pose.header.frame_id = 'map' 
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39 goal.target_pose.header.stamp = rospy.Time.now() 
40 goal.target_pose.pose = self.docking_station_pose 
41         
42 # Assign the docking station pose to a move_base action task 
43 NAV_DOCK_TASK = SimpleActionTask("NAV_DOC_TASK", "move_base", 

MoveBaseAction, goal, reset_after=True) 44 
45 # Create the root node 
46 BEHAVE = Sequence("BEHAVE") 
47         
48 # Create the "stay healthy" selector 
49 STAY_HEALTHY = Selector("STAY_HEALTHY") 
50         
51 # Create the patrol loop decorator 
52 LOOP_PATROL = Loop("LOOP_PATROL", announce=True, iterations=self.n_patrols) 
53         
54 # Add the two subtrees to the root node in order of priority 
55 BEHAVE.add_child(STAY_HEALTHY) 
56 BEHAVE.add_child(LOOP_PATROL) 
57         
58 # Create the patrol iterator 
59 PATROL = Iterator("PATROL") 
60         
61        # Add the move_base tasks to the patrol task 62        

for task in MOVE_BASE_TASKS: 
63            PATROL.add_child(task) 
64   
65 # Add the patrol to the patrol loop 
66 LOOP_PATROL.add_child(PATROL) 
67         
68        # Add the battery check and recharge tasks to the "stay healthy" task 

69        with STAY_HEALTHY: 
70 # The check battery condition (uses MonitorTask) 
71 CHECK_BATTERY = MonitorTask("CHECK_BATTERY", "battery_level", Float32, 
self.check_battery) 
72             
73 # The charge robot task (uses ServiceTask) 
74 CHARGE_ROBOT = ServiceTask("CHARGE_ROBOT", 
"battery_simulator/set_battery_level", SetBatteryLevel, 100, 
result_cb=self.recharge_cb) 
75       
76 # Build the recharge sequence using inline construction 
77 RECHARGE = Sequence("RECHARGE", [NAV_DOCK_TASK, CHARGE_ROBOT]) 
78                 
79 # Add the check battery and recharge tasks to the stay healthy selector 
80 STAY_HEALTHY.add_child(CHECK_BATTERY) 
81 STAY_HEALTHY.add_child(RECHARGE) 
82                 
83 # Display the tree before beginning execution 
84 print "Patrol Behavior Tree" 
85 print_tree(BEHAVE) 
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86             
87        # Run the tree 
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88 while not rospy.is_shutdown(): 
89 BEHAVE.run() 
90 rospy.sleep(0.1) 
91             
92 def check_battery(self, msg): 
93 if msg.data is None: 
94 return TaskStatus.RUNNING 95        else: 
96 if msg.data < self.low_battery_threshold: 
97 rospy.loginfo("LOW BATTERY - level: " + str(int(msg.data))) 98                

return TaskStatus.FAILURE 99            else: 
100                return TaskStatus.SUCCESS 
101     
102 def recharge_cb(self, result): 
103 rospy.loginfo("BATTERY CHARGED!") 
104             
105 def shutdown(self): 
106 rospy.loginfo("Stopping the robot...") 
107 self.move_base.cancel_all_goals() 
108 self.cmd_vel_pub.publish(Twist()) 
109 rospy.sleep(1) 
110 
111if __name__ == '__main__': 

112    tree = Patrol() 

Let's take a look at the key lines of the script: 

7 from pi_trees_ros.pi_trees_ros import * 

We begin by importing the pi_trees_ros library which in turn imports the core 

pi_trees classes from the pi_trees_lib library.  The first key block of code 

involves the creating of the navigation tasks shown below: 

26 for i in range(n_waypoints + 1): 
27 goal = MoveBaseGoal() 
28 goal.target_pose.header.frame_id = 'map' 
29 goal.target_pose.header.stamp = rospy.Time.now() 
30 goal.target_pose.pose = self.waypoints[i % n_waypoints] 
31             
32            move_base_task = SimpleActionTask("MOVE_BASE_TASK_" + str(i), 
"move_base", MoveBaseAction, goal, reset_after=False) 
33             
34            MOVE_BASE_TASKS.append(move_base_task) 
35         
36 # Set the docking station pose 
37 goal = MoveBaseGoal() 
38 goal.target_pose.header.frame_id = 'map' 
39 goal.target_pose.header.stamp = rospy.Time.now() 
40 goal.target_pose.pose = self.docking_station_pose 41         
42 # Assign the docking station pose to a move_base action task 
43 NAV_DOCK_TASK = SimpleActionTask("NAV_DOC_TASK", "move_base", 

MoveBaseAction, goal, reset_after=True) 
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Here we see nearly the same procedure as we used with SMACH although now we are 

using the SimpleActionTask from the pi_trees library instead of the 

SimpleActionState from the SMACH library. 

Note the parameter called reset_after in the construction of a SimpleActionTask.   

We set this to False for the move_base tasks assigned to waypoints but we set it to 

True for the docking move_base task for the following reason.  Recall that when a 

behavior or task in a behavior tree succeeds or fails, it retains that status indefinitely 

unless it is reset.  This "memory" property is essential because on every execution cycle, 

we poll the status of every node in the tree. This enables us to continually check 

condition nodes whose status might have changed since the last cycle.  However, if the 

robot has just successfully reached a waypoint, we want that status to be retained on the 

next pass through the tree so that the parent node will advance the sequence to the next 

waypoint.  On the other hand, when it comes to recharging, we need to reset the 

navigation task once the robot is docked so that it can be executed again the next time 

the battery runs low. 

Once we have the navigation and docking tasks created, we move on to building the rest 

of the behavior tree. The order in which we create the nodes in the script is somewhat 

flexible since it is the parent-child relations that determine the actual structure of the 

tree.  If we start at the root of the tree, our first behavior nodes would look like this: 

45 # Create the root node 
46 BEHAVE = Sequence("BEHAVE") 
47         
48 # Create the "stay healthy" selector 
49 STAY_HEALTHY = Selector("STAY_HEALTHY") 
50         
51 # Create the patrol loop decorator 
52 LOOP_PATROL = Loop("LOOP_PATROL", iterations=self.n_patrols) 
53         
54 # Build the full tree from the two subtrees 
55 BEHAVE.add_child(STAY_HEALTHY) 
56 BEHAVE.add_child(LOOP_PATROL) 

The root behavior is a Sequence labeled BEHAVE that will have two child branches; one 

that starts with the Selector labeled STAY_HEALTHY and a second branch labeled 

LOOP_PATROL that uses the Loop decorator to loop over the patrol task.  We then add 

the two child branches to the root node in the order that defines their priority.  In this 

case, the STAY_HEALTHY branch has higher priority than LOOP_PATROL. 
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58 # Create the patrol iterator 
59 PATROL = Iterator("PATROL") 60 
61        # Add the move_base tasks to the patrol task 62        

for task in MOVE_BASE_TASKS: 
63            PATROL.add_child(task) 
64   
65 # Add the patrol to the patrol loop 
66 LOOP_PATROL.add_child(PATROL)      

Next we take care of the rest of the patrol nodes.  The patrol sequence itself is 

constructed as an Iterator called PATROL.  We then add each move_base task to the 

iterator.  Finally, we add the entire patrol to the LOOP_PATROL task. 

68        # Add the battery check and recharge tasks to the "stay healthy" task 69        
with STAY_HEALTHY: 
70 # The check battery condition (uses MonitorTask) 
71 CHECK_BATTERY = MonitorTask("CHECK_BATTERY", "battery_level",  
Float32, self.check_battery) 
72             
73 # The charge robot task (uses ServiceTask) 
74 CHARGE_ROBOT = ServiceTask("CHARGE_ROBOT", 

"battery_simulator/set_battery_level", SetBatteryLevel, 100, 
result_cb=self.recharge_cb) 

75       
76            # Build the recharge sequence using inline construction 77            
RECHARGE = Sequence("RECHARGE", [NAV_DOCK_TASK, CHARGE_ROBOT]) 

Here we flesh out the STAY_HEALTHY branch of the tree.  First we define the  

CHECK_BATTERY task as a MonitorTask on the ROS topic battery_level using the 

callback function self.check_battery (described below).  Next we define the 

CHARGE_ROBOT behavior as a ServiceTask that connects to the ROS service 

battery_simulator/set_battery_level and sends a value of 100 to recharge the 

fake battery. 

We then construct the RECHARGE task as a Sequence whose child tasks are  

NAV_DOCK_TASK and CHARGE_ROBOT.  Note how we have used the inline syntax to 

illustrate how we can add child tasks at the same time that we construct the parent.  

Equivalently, we could have used the three lines: 

            RECHARGE = Sequence("RECHARGE") 
            RECHARGE.add_child(NAV_DOCK_TASK) 
            RECHARGE.add_child(CHARGE_ROBOT) 

You can use whichever syntax you prefer. 
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80 STAY_HEALTHY.add_child(CHECK_BATTERY) 
81 STAY_HEALTHY.add_child(RECHARGE) 

We complete the STAY_HEALTHY branch of the tree by adding the CHECK_BATTERY and 

RECHARGE tasks .  Note again that the order is important since we want to check the 

battery first to see if we need to recharge. 

83 # Display the tree before beginning execution 
84 print "Patrol Behavior Tree" 
85 print_tree(BEHAVE) 
86             
87 # Run the tree 
88 while not rospy.is_shutdown(): 
89 BEHAVE.run() 
90 rospy.sleep(0.1) 

Before starting execution, we use the print_tree() function from the pi_trees 

library to display a representation of the behavior tree on the screen.  The tree itself is 

executed by calling the run() function on the root node.  The run() function makes 

one pass through the nodes of the tree so we need to place it in a loop. 

Finally, we have the check_battery() callback: 

92 def check_battery(self, msg): 
93 if msg.data is None: 
94 return TaskStatus.RUNNING 95        else: 
96 if msg.data < self.low_battery_threshold: 
97 rospy.loginfo("LOW BATTERY - level: " + str(int(msg.data))) 98                

return TaskStatus.FAILURE 99            else: 
100                return TaskStatus.SUCCESS 

Recall that this function was assigned to the CHECK_BATTERY MonitorTask which 

monitors the battery_level topic.  We therefore check the battery level against the 

low_battery_threshold parameter.  If the level is below threshold, we return a task 

status of FAILURE.  Otherwise we return SUCCESS.  Because the CHECK_BATTERY task 

is the highest priority task in the STAY_HEALTHY selector, if it returns FAILURE, then 

the selector moves on to its next subtask which is the RECHARGE task. 

The patrol_tree.py script illustrates an important property of behavior trees that 

helps distinguish them from ordinary hierarchical state machines like SMACH.  You'll 

notice that after a recharge, the robot continues its patrol where it left off even though 

nowhere in the script did we explicitly save the last waypoint reached.  Remember that 

in the SMACH example (patrol_smach_concurrence.py), we had to save the last 
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state just before a recharge so that the robot would know where to continue after being 

charged.  Behavior trees inherently store their state by virtue of each node's status 

property.  In particular, if the robot is on its way to a waypoint, the navigation task doing 

the work of moving the robot has a status of RUNNING.  If the robot is then diverted to 

the docking station for a recharge, the status of the previously active navigation status is 

still RUNNING.  This means that when the robot is fully charged and the  

CHECK_BATTERY task returns SUCCESS, control returns automatically to the running 

navigation node. 

 3.10.5  A housing cleaning robot using behavior trees 

Earlier in the chapter we used SMACH to simulate a house cleaning robot.  Let us now do 

the same using behavior trees.  Our new script is called clean_house_tree.py and is 

found in the rbx2_tasks/nodes subdirectory.  The program is similar to the  

patrol_tree.py script but this time we will add a few tasks that simulate vacuuming, 

scrubbing and mopping just as we did with the SMACH example.  We will also include  

battery checking and recharge behavior. 

Before describing the code, let's try it out.  If you don't already have the 

fake_turtlebot.launch file running, bring it up now: 

$ roslaunch rbx2_tasks fake_turtlebot.launch 

Recall that this launch file also runs a move_base node, the map server with a blank 

map, and the fake battery node with a default runtime of 60 seconds. 

Next, bring up RViz with the nav_tasks.rviz config file: 

$ rosrun rviz rviz -d `rospack find rbx2_tasks`/nav_tasks.rviz 

Finally, run the clean_house_tree.py script: 

$ rosrun rbx2_tasks clean_house_tree.py 

The robot should make one circuit of the square, performing cleaning tasks in each room 

and recharging when necessary. 

The overall behavior tree implemented by the clean_house_tree.py script looks like 

this: 
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In addition to the main tasks shown above, we also require a few condition nodes such 

as "is the room already clean" and "are we at the desired location?"  The need for these 

condition checks arises from the recharge behavior of the robot.  For example, suppose 

the robot is in the middle of mopping the kitchen floor when its battery level falls below 

threshold.  The robot will navigate out of the kitchen and over to the docking station.  

Once the robot is recharged, control will return to the last running task—mopping the 

kitchen floor—but now the robot is no longer in the kitchen.  If we don't check for this, 

the robot will start mopping the docking station!  So to get back to the kitchen, we 

include a task that checks the robot's current location and compares it to where it is 

supposed to be.  If not, the robot navigates back to that location. 

A good way to understand the behavior tree we will create is to imagine that you are 

asked to clean a room yourself.  If you were asked to clean the bathroom, you might use 

a strategy like the following: 

• First find out if the bathroom even needs cleaning.  Perhaps your 

roommate felt energetic and took care of it already.  If there is a 

task checklist somewhere such as on the refrigerator, make sure the 

bathroom isn't already checked off. 

• If the bathroom does need cleaning, you need to be in the 

bathroom to clean it.  If you are already in the bathroom, then you 

can start cleaning.  If not, you have to navigate your way through 

the house to the bathroom. 

• Once you are in the bathroom, check the list of tasks to perform.  

After each task is completed, put a check mark beside the task on 

the list. 

We can mimic this very same process in a behavior tree.  For a given room, the subtree 

will look something like the following.  In parenthesis beside each task, we have 

indicated the type of task it is:  selector, sequence, iterator, condition, or action. 
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• CLEANING_ROUTINE (selector) 

• IS_ROOM_CLEAN (condition) 

• CLEAN_ROOM (sequence) 

• NAV_ROOM (selector) 

• CHECK_LOCATION (condition) 

• MOVE_BASE (action) 

• TASK_LIST(iterator) 

• DO_TASK_1(sequence) 

• CHECK_LOCATION (condition) 

• EXECUTE_TASK (action) 

• UPDATE_TASK_LIST (action) 

• DO_TASK_2(sequence) 

• CHECK_LOCATION (condition) 

• EXECUTE_TASK (action) 

• UPDATE_TASK_LIST (action) 

• ETC 

Here's how the tree would look if the only task was to vacuum the living room and we 

omit the battery checking subtree: 

 
We interpret this tree as follows.  The top level node (CLEANING_ROUTINE) is a selector 

so if the condition node IS_ROOM_CLEAN returns SUCCESS, then we are done.  

Otherwise we move to selector's next child task, CLEAN_ROOM. 

The CLEAN_ROOM task is a sequence whose first sub-task is NAV_ROOM which in turn is  

a selector.  The first sub-task in the NAV_ROOM selector is the condition 

CHECK_LOCATION.  If this check returns SUCCESS, then NAV_ROOM also returns 

SUCCESS and the CLEAN_ROOM sequence can move to the next behavior in its sequence 

which is the TASK_LIST iterator.  If the CHECK_LOCATION task returns FAILURE,  then 
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we execute the MOVE_BASE behavior.  This continues until CHECK_LOCATION returns 

SUCCESS. 

Once we are at the target room, the TASK_LIST iterator begins.  First we check that we 

are still at the correct location, then we execute each task in the iterator and update the 

task list. 

To make our script more readable, the simulated cleaning tasks can be found in the file 

cleaning_tasks_tree.py under the rbx2_tasks/src folder.  We then import this 

file at the top of the clean_house_tree.py script.  Let's look at the definition of one 

of these simulated tasks: 
class VacuumFloor(Task):     def __init__(self, name, room, 
timer, *args):         super(VacuumFloor, 
self).__init__(self, name, *args)     
        self.name = name         
self.room = room         
self.counter = timer         
self.finished = False 
        self.cmd_vel_pub = rospy.Publisher('cmd_vel', 
Twist)         self.cmd_vel_msg = Twist()         
self.cmd_vel_msg.linear.x = 0.05 

    def run(self):         if self.finished:             return 
TaskStatus.SUCCESS         else:             rospy.loginfo('Vacuuming 
the floor in the ' + str(self.room))                         while 
self.counter > 0:                 
self.cmd_vel_pub.publish(self.cmd_vel_msg) 
                self.cmd_vel_msg.linear.x *= -1                 
rospy.loginfo(self.counter) 
                self.counter -= 1                 
rospy.sleep(1) 
                return TaskStatus.RUNNING 

             
            self.finished = True 
            self.cmd_vel_pub.publish(Twist()) 
            message = "Finished vacuuming the " + str(self.room) + "!" 
            rospy.loginfo(message) 

The VacuumFloor class extends the basic Task class.  Since we want to move the 

robot back and forth in a simulated vacuuming motion, we create a ROS publisher to 

send Twist message to the cmd_vel topic.  We then override the run() function 

which creates the desired motion.  Since the run() function is visited on every pass 

through the behavior tree, we return a status of RUNNING until the motion is complete at 

which time we return a status of SUCCESS. 
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The clean_house_tree.py script is similar to the patrol_tree.py program we 

have already described in detail earlier.  Let's therefore focus only on the key 

differences. 
 class BlackBoard():      
def __init__(self): 
         # A list to store rooms and tasks          
self.task_list = list() 
         
         # The robot's current position on the map 
         self.robot_position = Point() 

Recall that some behavior trees use an object called the global "black board" for tracking 

certain properties of the tree and the world.  In Python, the black board can be a simple 

class with a number of variables to hold the data.  At the top of the  

clean_house_tree.py script we define the BlackBoard() class shown above with 

a list variable to store the task list and a ROS Point variable to track the robot's 

current coordinates on the map. 
 black_board = BlackBoard() 

 # Create a task list mapping rooms to tasks  
black_board.task_list = OrderedDict([ 
     ('living_room', [Vacuum(room="living_room", timer=5)]), 
     ('kitchen', [Mop(room="kitchen", timer=7)]), 
     ('bathroom', [Scrub(room="bathroom", timer=9), Mop(room="bathroom",  
timer=5)]), 
     ('hallway', [Vacuum(room="hallway", timer=5)]) 
     ]) 

Next we create an instance of the BlackBoard class and create an ordered list of 

cleaning tasks using the task definitions from the file clean_house_tasks_tree.py 

in the src/rbx2_tasks subdirectory.  This task list will be convenient for iterating 

through all the tasks assigned to the robot.  It also means that we can add or remove 

tasks by simply editing the list here at the top of the script. 

The heart of the script involves creating the desired behavior tree from this task list.   

Here is the relevant block in its entirety. 
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1 for room in black_board.task_list.keys(): 
2 # Convert the room name to upper case for consistency 3        

ROOM = room.upper() 
4     
5 # Initialize the CLEANING_ROUTINE selector for this room 
6 CLEANING_ROUTINE[room] = Selector("CLEANING_ROUTINE_" + ROOM) 
7         
8 # Initialize the CHECK_ROOM_CLEAN condition 
9 CHECK_ROOM_CLEAN[room] = CheckRoomCleaned(room) 
10         
11        # Add the CHECK_ROOM_CLEAN condition to the CLEANING_ROUTINE selector 

12        CLEANING_ROUTINE[room].add_child(CHECK_ROOM_CLEAN[room]) 
13         
14 # Initialize the CLEAN_ROOM sequence for this room 
15 CLEAN_ROOM[room] = Sequence("CLEAN_" + ROOM) 
16 
17        # Initialize the NAV_ROOM selector for this room                    18        

NAV_ROOM[room] = Selector("NAV_ROOM_" + ROOM) 
19          
20        # Initialize the CHECK_LOCATION condition for this room 
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21        CHECK_LOCATION[room] = CheckLocation(room, self.room_locations) 22      
23        # Add the CHECK_LOCATION condition to the NAV_ROOM selector 24        

NAV_ROOM[room].add_child(CHECK_LOCATION[room]) 
25          
26        # Add the MOVE_BASE task for this room to the NAV_ROOM selector 27        

NAV_ROOM[room].add_child(MOVE_BASE[room]) 
28          
29        # Add the NAV_ROOM selector to the CLEAN_ROOM sequence 30        

CLEAN_ROOM[room].add_child(NAV_ROOM[room]) 
31         
32 # Initialize the TASK_LIST iterator for this room 
33 TASK_LIST[room] = Iterator("TASK_LIST_" + ROOM) 34 
35        # Add the tasks assigned to this room 36        

for task in black_board.task_list[room]: 
37            # Initialize the DO_TASK sequence for this room and task 38            

DO_TASK = Sequence("DO_TASK_" + ROOM + "_" + task.name) 
39             
40            # Add a CHECK_LOCATION condition to the DO_TASK sequence 41            

DO_TASK.add_child(CHECK_LOCATION[room]) 
42             
43 # Add the task itself to the DO_TASK sequence 
44 DO_TASK.add_child(task) 
45             
46 # Create an UPDATE_TASK_LIST task for this room and task 
47 UPDATE_TASK_LIST[room + "_" + task.name] = UpdateTaskList(room, task) 
48             
49 # Add the UPDATE_TASK_LIST task to the DO_TASK sequence 
50 DO_TASK.add_child(UPDATE_TASK_LIST[room + "_" + task.name]) 
51             
52 # Add the DO_TASK sequence to the TASK_LIST iterator 
53 TASK_LIST[room].add_child(DO_TASK) 
54             
55        # Add the room TASK_LIST iterator to the CLEAN_ROOM sequence 56        

CLEAN_ROOM[room].add_child(TASK_LIST[room]) 
57             
58        # Add the CLEAN_ROOM sequence to the CLEANING_ROUTINE selector 

59        CLEANING_ROUTINE[room].add_child(CLEAN_ROOM[room]) 60     
61 # Add the CLEANING_ROUTINE for this room to the CLEAN_HOUSE sequence 
62 CLEAN_HOUSE.add_child(CLEANING_ROUTINE[room]) 

As you can see, the behavior tree is built by looping over all the tasks in the task list 

stored on the black board.  The inline comments should make clear how we build a 

subtree for each room and its tasks.  We then add each subtree to the overall 

CLEAN_HOUSE task. 

 3.10.6  Parallel tasks 

Some times we want the robot to work on two or more tasks simultaneously.  The 

pi_trees library includes the Parallel task type to handle these situations.  There 
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are two flavors of Parallel task.  The ParallelAll type returns SUCCESS if all the 

simultaneously running tasks succeed.  The ParallelOne type returns SUCCESS as 

soon as any one of the tasks succeeds. 

The sample script called parallel_tree.py in the rbx2_tasks/nodes directory 

illustrates the ParallelAll task type.  In this script, the first task prints a given 

message one word at a time.  The second task counts to 10.  Try out the script now: 

$ rosrun rbx2_tasks parallel_tree.py 

You should see the following output: 

Behavior Tree Structure  
 --> PRINT_AND_COUNT  
     --> PRINT_MESSAGE  
     --> COUNT_TO_10  
Take  
1 me 2 
to 3 
your 4 
leader!  
5  
6  
7  
8  
9  
10  

Notice how both the message task and the counting task run to completion before the 

script exits but that the output alternates between the two tasks since they are running in 

parallel. 

Let's take a look at the core part of the code: 
1 class ParallelExample(): 
2     def __init__(self): 
3         # The root node 
4         BEHAVE = Sequence("behave") 
5 
6 

         
        # The message to print 

7         message = "Take me to your leader!" 
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8         
9 # How high the counting task should count 
10 n_count = 10 
11 
12        # Create a PrintMessage() task as defined later in the script 13        

PRINT_MESSAGE = PrintMessage("PRINT_MESSAGE", message) 
14         
15        # Create a Count() task, also defined later in the script 16        

COUNT_TO_10 = Count("COUNT_TO_10", n_count) 
17         
18 # Initialize the ParallelAll task 
19 PARALLEL_DEMO = ParallelAll("PRINT_AND_COUNT") 
20         
21 # Add the two subtasks to the Parallel task 
22 PARALLEL_DEMO.add_child(PRINT_MESSAGE) 
23 PARALLEL_DEMO.add_child(COUNT_TO_10) 
24         
25 # Add the Parallel task to the root task 
26 BEHAVE.add_child(PARALLEL_DEMO) 
27         
28 # Display the behavior tree 
29 print "Behavior Tree Structure" 
30 print_tree(BEHAVE) 
31         
32 # Initialize the overall status 
33 status = None 
34             
35 # Run the tree 
36 while not status == TaskStatus.SUCCESS: 
37 status = BEHAVE.run() 
38 time.sleep(0.1) 

The construction of the behavior tree shown above should be fairly self explanatory 

from the inline comments.  Note that the PrintMessage() and Count() tasks are 

defined later in the script and are fairly straightforward so we will not display them here. 

If you modify the parallel_tree.py script so that the ParallelAll task on line 19 

above is replaced with a ParallelOne task instead, the output should look like this: 

Behavior Tree Structure  
 --> PRINT_AND_COUNT  
     --> PRINT_MESSAGE  
     --> COUNT_TO_10  
Take  
1 me 2 
to 3 
your 4 
leader!  
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Now the script exits as soon as one of the tasks finishes.  In this case, the  

PRINT_MESSAGE task completes before the COUNT_TO_10 task so we do not see the 

numbers 5-10. 

 3.10.7  Adding and removing tasks 

One of the key features of behavior trees is the ability to add or remove behaviors in a 

modular fashion.  For example, suppose we want to add a "dish washing" task to the 

house cleaning robot when it is in the kitchen.  All we need to do is define this new task 

and add it to our task list at the top of our script and we are done.  There is no need to 

worry about how this new task interacts with other tasks in the behavior tree.  It simply 

becomes another child task in the TASK_LIST iterator for the kitchen. 

Conversely, suppose your robot does not a have a docking station and you want to 

eliminate the recharging task from the behavior tree but you still want to be notified 

when the battery is low.  Then we can simply comment out the line that adds the 

RECHARGE behavior to the STAY_HEALTHY task, then add a new task that sends us an 

email or cries for help.  

The addition or removal of nodes or even whole branches of the behavior tree can even 

be done dynamically at run time.  The sample script add_remove_tree.py 

demonstrates the concept.  The script is identical to the parallel_tree.py script 

described in the previous section except that at the end of alternate cycles through the 

tree, we remove the counting task so that only the words are displayed.  On the next 

cycle, we add back the counting task.  Here is the key block of code that does the work: 

 remove =  True 

 while True:      status = 

BEHAVE.run()      time.sleep(0.1)      

if status == TaskStatus.SUCCESS: 

         BEHAVE.reset() 

         if remove:              

PARALLEL_DEMO.remove_child(COUNT_WORDS)          

else:              

PARALLEL_DEMO.add_child(COUNT_WORDS)          remove 

= not remove 

Try out the script with the command: 

$ rosrun rbx2_tasks add_remove_tree.py 
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The output should start out the same as the parallel_tree.py script except that on 

successive loops through the script, the counting task will be omitted then reappear, and 

so on. 

It's not hard to imagine a behavior tree where nodes or branches are added or pruned 

based a robot's experience to better adapt to the conditions on hand.  For example, one 

could add or remove entire branches of the tree depending on which room the robot is in 

or switch its behavior from cleaning to patrolling by simply snipping one branch of the 

tree and adding the other. 
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 4.  CREATING A URDF MODEL FOR YOUR 

ROBOT 

If you have built your own robot and you want to use it with ROS, you will need to 

create a URDF model that accurately reflects the robot's dimensions as well as the 

placement of any cameras, servos, laser scanners or other sensors.  The model is used 

by the ROS robot_state_publisher to publish the tf transform tree for the robot.  

The transform tree is then used by other ROS components such as the navigation stack, 

the openni_camera package, and MoveIt! (to name a few) to accurately track the 

relative positions and orientations of the robot's parts relative to each other and to the 

world. 

The best place to start when learning about URDF models for the first time is with the 

URDF tutorials on the ROS Wiki.  Once you understand the basic concepts and syntax, 

it sometimes helps to have a few templates that you can customize for your particular 

robot.  This chapter describes a number of URDF/Xacro models that are included in the 

rbx2_description package and explains how you can modify them for your robot.  

URDF models can use both mesh objects (STL or Collada) or  simple box and cylinder 

components.  We will cover both cases in the sections that follow.  Our general strategy 

will be as follows: 

• Create individual URDF/Xacro files for the main components including a base 

with wheels, a torso, camera, laser scanner, pan-and-tilt head, and arm(s).  All 

dimensions and offsets will be stored as properties at the top of each file so that 

modifications can be made easily at any time. 

• Create separate files for materials (e.g. colors) and hardware components (e.g. 

Dynamixel servos and brackets). 

• Construct our final URDF model by including the relevant files created earlier 

and attaching the various components in the right places for our particular 

robot. 

• View the model in RViz to make sure everything looks OK. 

• Test the operation of the model using the ArbotiX simulator. 

The modular approach taken here makes it very easy to add or remove components like 

an arm or to make changes by simply modifying parameters that specify dimensions 
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like torso height or offsets like the placement of the wheels.  Most of the files in this 

chapter started off as copies of Michael Ferguson's Maxwell robot.  

 4.1  Start with the Base and Wheels 

All robot models in ROS need to start with the base and the simplest robots are nothing 

more than a base.  If you are using a mesh model (STL or Collada), the wheels can be a 

fixed part of the model or separate meshes.  There is no real need to make the wheels 

rotate around a joint but some ROS packages (like MoveIt!) do assume that the wheels 

are separate components attached to the base at joints (which can be fixed or 

continuous). 

If your robot's torso is fixed to the base and has no moving parts, it can also be included 

in the same mesh file as the base.  However, in the examples that follow, we will treat it 

as a separate component.  This way you can modify the torso at a later time; for 

example, you might want to add a linear actuator to make it move up and down. 

Before we look at the URDF files, let's make sure we can view them in RViz.  We will 

use this procedure throughout the chapter for verifying the appearance of our model. 

First run the file box_robot_base_only.launch in the rbx2_description 

package: 

$ roslaunch rbx2_description box_robot_base_only.launch 

You should see a small window appear called "Joint State Publisher" with two slider 

controls, one for each drive wheel: 

 

Next, bring up RViz with the included urdf.rviz config file: 

$ rosrun rviz rviz -d `rospack find rbx2_description`/urdf.rviz 

The view in RViz should look something like this: 
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Note how the Fixed Frame is set to /base_footprint.  Keep this in mind as we look 

at the URDF definition of the base later on. 

NOTE: As we load different URDF models throughout this chapter, there is (usually) 

no need to restart RViz to see the changes.  Instead, simply toggle the checkbox beside 

the RobotModel display.  (By "toggle the checkbox" we mean un-check the box then 

check it again.)  This should refresh the model to the latest version loaded on the 

parameter server.  If a model is already loaded, changes in joint definitions usually get 

detected by RViz automatically whereas modifications to link parameters require the 

checkbox to be toggled.  Occasionally, especially when working with meshes, RViz 

might get stuck on a previously loaded model or display something in the wrong color.  

On these occasions, restarting RViz should clear the problem. 

 4.1.1  The robot_state_publisher and joint_state_publisher nodes 

Let's take a look at the launch file we used above, box_robot_base_only.launch: 

<launch> 
    <!-- Load the URDF/Xacro model of our robot --> 
    <arg name="urdf_file" default="$(find xacro)/xacro.py '$(find 
rbx2_description)/urdf/box_robot/box_robot_base_only.urdf.xacro'" /> 

    <param name="robot_description" command="$(arg urdf_file)" /> 
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    <!-- Publish the robot state --> 

<node name="robot_state_publisher" pkg="robot_state_publisher" 
type="state_publisher"> 
     <param name="publish_frequency" value="20.0"/> 
    </node> 

<!-- Provide simulated control of the robot joint angles -->     <node 
name="joint_state_publisher" pkg="joint_state_publisher"  
type="joint_state_publisher"> 
     <param name="use_gui" value="True" /> 
     <param name="rate" value="20.0"/> 
    </node> 

</launch> 

The <arg> line near the top points to our robot's URDF/Xacro file and the <param> 

line loads that file onto the ROS parameter server as the parameter named 

robot_description.  In fact, you can view the XML of the loaded model using the 

command: 

$ rosparam get /robot_description 

though there is generally little need to do this except perhaps during debugging to verify 

that the parameter has been set. 

The next few lines in the launch file bring up the robot_state_publisher node.  

This node reads the geometry defined in the robot model and publishes a set of 

transforms that make up the robot's tf tree.  Without the tf tree, very little else could 

be done with the robot including navigation, 3D vision, or controlling an arm. 

The next set of the lines launches the joint_state_publisher node.  This optional 

node is used mostly when testing a URDF model in RViz as we are doing now.  

Running the node with the use_gui parameter set to True brings up the slider control 

window we saw earlier for setting the positions of any movable joints defined in the 

robot model.  At the moment we only have the two wheel joints but when we add a 

multi-jointed arm later in the chapter, we will be able to set its configuration as well. 

NOTE: When the robot's joints are under the control of an actual hardware driver, the 

joint_state_publisher node is no longer used and in fact, it would conflict with 

the real joint positions being published by the driver. 
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 4.1.2  The base URDF/Xacro file 

Let's now take a look at the URDF/Xacro file that was used above to load the box 

model of the robot base.  The file is called base.urdf.xacro and it is located in the 

rbx2_description/urdf/box_robot directory.  We will review the file in sections 

beginning at the top: 
1 <?xml version="1.0"?> 
2 <robot name="base" xmlns:xacro="http://ros.org/wiki/xacro"> 

All URDF/Xacro files will begin with these two opening tags.  Everything after the 

<robot> tag will define our component and we will close the whole file with an ending 

</robot> tag. 

4 <!-- Define a number of dimensions using properties --> 
5 <property name="base_size_x" value="0.30" /> 
6 <property name="base_size_y" value="0.30" /> 
7 <property name="base_size_z" value="0.12" /> 
8 <property name="wheel_length" value="0.02032" /> 
9 <property name="wheel_radius" value="0.06191" /> 
10 <property name="wheel_offset_x" value="0.09" /> 
11 <property name="wheel_offset_y" value="0.17" /> 
12 <property name="wheel_offset_z" value="-0.038" /> 
13   
14  <property name="PI" value="3.1415" /> 

The properties section allows us to assign all dimensions and offsets to variables that 

can then be used throughout the rest of the file.  If changes are made to the robot at a 

later time, simply tweak these values accordingly.  Keep in mind the following points 

when setting property values: 

• linear dimensions are specified in meters 

• angular values are given in radians 

• when specifying xyz parameters, the coordinate axes are aligned with x 

pointing in the forward direction of the robot, y pointing to its left and z 

pointing upward.  For example, the property wheel_offset_y above indicates 

the distance that each wheel is mounted to the left or right of the robot's center 

line.. 

• when assigning rotation parameters rpy (roll, pitch, yaw), the roll parameter 

(r) rotates around the x axis, pitch (p) is around the y axis and yaw (y) rotates 

about the z axis. 
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To see the axes attached to the base in RViz, set the Alpha value of the base_link to 

something like 0.5 like this: 

 

Here we have set the Alpha value to 0.5 for the base_link and checked the box 

beside Show Axes.  RViz always uses the same color code for the frame axes attached 

to a link: red for the x-axis, green for y and blue for z. 

Now back to our discussion of the  base.urdf.xacro file.  Here is the block for a 

wheel: 

16 <!-- define a wheel --> 
17 <macro name="wheel" params="suffix parent reflect color"> 
18 <joint name="${parent}_${suffix}_wheel_joint" type="continuous"> 
19 <axis xyz="0 0 1" /> 
20 <limit effort="100" velocity="100"/> 
21 <safety_controller k_velocity="10" /> 
22 <origin xyz="${wheel_offset_x} ${reflect*wheel_offset_y} $ 
{wheel_offset_z}" rpy="${reflect*PI/2} 0 0" /> 
23 <parent link="${parent}_link"/> 
24 <child link="${parent}_${suffix}_wheel_link"/> 
25 </joint> 
26 <link name="${parent}_${suffix}_wheel_link"> 
27 <visual> 
28 <origin xyz="0 0 0" rpy="0 0 0" /> 



 

 Creating a URDF Model for your Robot - 100 

29 <geometry> 
30 <cylinder radius="${wheel_radius}" length="${wheel_length}"/> 
31 </geometry> 
32 <material name="${color}" /> 
33 </visual> 
34 </link> 
35 </macro> 

A wheel is defined as a macro so that we can use it for each drive wheel without having 

to repeat the XML.  We won't describe the syntax in detail as it is already covered in the 

URDF tutorials.  However, note the use of the reflect parameter which takes on the 

values 1 or -1 for the left and right sides respectively and allows us to flip both the 

wheel and the sign of the y offset. 

37 <!-- The base xacro macro --> 
38 <macro name="base" params="name color"> 
39 <link name="${name}_link"> 
40 <visual> 
41 <origin xyz="0 0 0" rpy="0 0 0" /> 
42 <geometry> 
43 <box size="${base_size_x} ${base_size_y} ${base_size_z}" /> 
44 </geometry> 
45 <material name="${color}" /> 
46 </visual> 
47 <collision> 
48 <origin xyz="0 0 0" rpy="0 0 0" /> 
49 <geometry> 
50 <box size="${base_size_x} ${wheel_offset_y*2 + wheel_length} $ 
{base_size_z}" /> 
51 </geometry> 
52 </collision> 
53 </link> 
54 </macro> 

Next we define the macro for the base itself.  In this case we are using a simple box 

geometry for the <visual> component incorporating the parameters defined at the top 

of the file.  For the <collision> block, we have defined a wider box to encompass 

the wheels.  This provides a safety margin around the robot to help prevent the wheels 

getting caught against obstacles.  (Note: if your robot's wheels lie inside the perimeter 

of the base, then you could simply use the same box used for the visual component.) 

56 <link name="base_footprint"> 
57 <visual> 
58 <origin xyz="0 0 0" rpy="0 0 0" /> 
59 <geometry> 
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60 <box size="0.05 0.05 0.001" /> 
61 </geometry> 
62 <material name="TransparentGreen" /> 
63 </visual> 
64 </link> 
65   
66 <joint name="base_joint" type="fixed"> 
67 <origin xyz="0 0 ${base_size_z/2 - wheel_offset_z}" rpy="0 0 0" />        68    

<parent link="base_footprint"/> 
69 <child link="base_link" /> 
70 </joint> 

Here we define the base_footprint link and a fixed joint that defines its relationship 

to the base_link.  As explained in the next section, the role of the base_footprint 

is essentially to define the elevation of the base above the ground.  As you can see 

above, the joint between the footprint and the base raises the base by an amount 

calculated from the base height and the z-offset of the wheels.  To understand why we 

have to elevate the robot by an amount base_size_z/2, change the Fixed Frame in 

RViz to /base_link.  If you use your mouse to shift the viewpoint so that you are 

looking at the ground nearly edge-on, the image should look like this: 
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Note how the origin of a URDF box component is placed at the center of the box;  i.e. at 

a height of  base_size_z/2 meters above the bottom of the robot.  Consequently, the 

fixed joint between the /base_footprint frame (which rests on the ground) and the 

/base_link frame must include a translation in the z-direction a distance of 

base_size_z/2 meters just to get the bottom of the robot up to the ground plane. 

Finally, let's add the two drive wheels to the robot: 

72 <!-- Add the drive wheels --> 
73 <wheel parent="base" suffix="l" reflect="1" color="Orange"/> 
74 <wheel parent="base" suffix="r" reflect="-1" color="Orange"/> 

Here we call the <wheel> macro twice with the reflect parameter set first to 1 for 

the left wheel and -1 for the right to make sure the wheels get mounted on opposite 

sides of the base.  The suffix parameter causes the <wheel> macro to give each wheel 

link a unique name. 

 4.1.3  Alternatives to using the /base_footprint frame 

Not everyone uses the /base_footprint frame method for elevating the robot to the 

proper height above the ground.  Another method simply adds the ground clearance to 

the <origin> tag of the /base_link frame in the URDF model like this: 

  <parameter name="ground_clearance" value="0.025" /> 

  <!-- The base xacro macro --> 
  <macro name="base" params="name color"> 
    <link name="${name}_link"> 
      <visual> 
        <origin xyz="0 0 ${ground_clearance}" rpy="0 0 0" /> 
        <geometry> 
          <box size="${base_size_x} ${base_size_y} ${base_size_z}" /> 
        </geometry> 
        <material name="${color}" /> 
      </visual> 
      <collision> 
        <origin xyz="0 0 ${ground_clearance}" rpy="0 0 0" /> 
        <geometry> 
          <box size="${base_size_x} ${wheel_offset_y*2 + wheel_length} $ 
{base_size_z}" /> 
        </geometry> 
      </collision> 
    </link> 
  </macro> 
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The only problem with this approach is that the ground_clearance variable then has 

to be added to the origin of all the components in your model, including wheels, torso, 

camera, arms, etc.  If you do use this approach, then remember that other ROS packages 

like the Navigation stack will require using the /base_link frame rather than 

/base_footprint in a number of configuration files. 

 4.1.4  Adding the base to the robot model 

So far we have only defined the base and wheels as a macro.  We now need to create a 

URDF/Xacro file to define the robot as a whole to which we will add the base as a 

component. 

The file we need is called box_robot_base_only.xacro in the 

rbx2_templates/urdf/box_robot directory.  Let's take a look at it now: 

<?xml version="1.0"?> 
<robot name="box_robot" xmlns:xacro="http://ros.org/wiki/xacro"> 

   <!-- Include all component files --> 
   <xacro:include filename="$(find rbx2_description)/urdf/materials.urdf.xacro" 
/> 

   <xacro:include filename="$(find  
rbx2_description)/urdf/box_robot/base.urdf.xacro" /> 

    
   <!-- Add the base and wheels --> 
   <base name="base" color="Black"/> 

</robot> 

As you can see, the file is quite simple.  First we add a name for our robot to the 

opening <robot> tag (highlighted in bold above).  Then we include two macro files—

the materials file that defines various colors, and the base macro file we just created.  

Finally, we add the base to the robot by calling the <base> macro with a name and 

color. 

As we will see, adding a torso, camera, laser scanner and arm are nearly as 

straightforward. 

 4.1.5  Viewing the robot's transform tree 

To view an image of the robot's tf tree, use the view_frames utility: 

 

$ cd ~ 
$ rosrun tf view_frames 
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This will create a PDF file called frames.pdf in the current directory.  It can be 

viewed using any PDF reader such as evince: 

 $ evince frames.pdf 
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For our base-only robot, we see that the transform tree is quite simple.  Each link in our 

URDF model appears as a node in the tree while the arcs represent the coordinate 

transformations from one link to the next.  The root of the tree is the 

/base_footprint link which in turn connects to the /base_link.  The 

/base_link then branches to the left and right drive wheels. 

 4.1.6  Using a mesh for the base 

If you have a 3D mesh for your base and/or wheels, you can use them instead of a 

boxand-cylinder model.  The rbx2_description package includes STL meshes for Pi 

Robot's components to be used as an example.  You can find the STL files in the 

directory rbx2_description/meshes/pi_robot.  The mesh files were created in 

Google Sketchup and cleaned up using Meshlab.  (See the next section on simplifying 

meshes.)  The Sketchup files are located in the directory 
rbx2_description/sketchup/pirobot. 

To bring up just the base, first terminate any other URDF launch file you might have 

running from an earlier section, then run the following: $ roslaunch 

rbx2_description pi_robot_base_only.launch 

If RViz is not still running, bring it up now: 
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$ rosrun rviz rviz -d `rospack find rbx2_description`/urdf.rviz 

The view in RViz should look something like this: 

 

(Remember to toggle the checkbox beside the RobotModel display if you are still 

seeing a previously loaded model.) 

To see how the mesh was included in the URDF model, take a look at the file  

pi_base.urdf.xacro in the directory rbx2_description/urdf/pi_robot.  The  

file is nearly identical to the box model of the base with a few key differences.  Here are 

the key property lines and the block defining the base macro: 

  <property name="base_radius" value="0.152" /> 
  <property name="base_height" value="0.241" /> 
  <property name="ground_clearance" value="0.065" /> 

  <property name="base_mesh_scale" value="0.0254" /> 

  <property name="PI" value="3.1415" /> 

  <!-- The base xacro macro --> 
  <macro name="base" params="name color"> 
    <link name="${name}_link"> 
      <visual> 
        <origin xyz="0 0 0" rpy="0 0 ${PI/2}" /> 
        <geometry> 
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           <mesh  
filename="package://rbx2_description/meshes/pi_robot/pi_robot_base.stl" scale="$ 
{base_mesh_scale} ${base_mesh_scale} ${base_mesh_scale}" /> 
        </geometry> 
        <material name="${color}" /> 
      </visual> 
      <collision> 
        <origin xyz="0 0 ${base_height/2}" rpy="0 0 0" /> 
        <geometry> 
           <cylinder radius="${base_radius}" length="${base_height}"/> 
        </geometry> 
      </collision> 
    </link> 
  </macro> 

Since Pi Robot's base is cylindrical rather than a box, we set its radius and height as 

properties.  We also set the ground clearance and base mesh scale values.  (More on the 

mesh scale below.) 

The key line is highlighted in bold above.  Instead of defining a simple box (or in this 

case a cylinder) for the visual component, we load the 3D model of the base using the 

<mesh> tag.  The filename parameter is set to the ROS package path of the 

appropriate file, in this case, the file  pi_robot_base.stl in the directory  

rbx2_description/meshes/pi_robot.  Since meshes created in CAD programs 

will not necessarily use meters as the base unit, we also use a scale parameter that 

takes three values for the x, y and z scale multipliers.  (The scale will almost always be 

the same in all three directions.)  Pi's base mesh was created in Google Sketchup and it 

turns out that the appropriate scale factor is 0.0254.  This is the value set for the 

base_mesh_scale property near the top of the file. 

Note that we use a simple cylinder rather than the mesh in the <collision> block.  

The reason is that the collision parameters are used by other ROS packages like the 

Navigation stack for checking that the robot is not about to run into an obstacle.  It is 

much quicker to do collision checking with simple geometric shapes like boxes and 

cylinders than to use a 3D mesh which might have thousands of faces.  As long as the 

simpler shape envelops the visual mesh, it serves just as well for collision checking.  

Note also that we have set the z origin component for the collision cylinder to 

base_height/2.  This is because the coordinate frame of the base mesh is actually 

attached to the bottom of the mesh rather than the middle as will will explain below. 

To see the collision cylinder in RViz, simply check the box beside Collision Enabled 

under the RobotDisplay and the view should look like this: 
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Note how the collision cylinder completely envelops the base mesh.  Toggling the 

Collision Enabled checkbox is a good way to verify that your collision shapes are 

positioned and sized correctly.  In this case, you might be wondering if the wheels will 

present a collision hazard since they stick out from the base cylinder.  Remember that 

each wheel has its own collision envelope which we defined to be the same shape as the 

wheel itself.  So in that sense the wheels are covered.  If for some reason you wanted to 

be especially cautious, you could increase the size of the base collision cylinder to 

envelop the wheels as well.  However, this might also prevent the robot from navigating 

through narrow gaps. 

Computing the ground clearance for the robot depends on where the mesh defines its 

origin.  To see the axes for the Pi Robot base mesh, set the parameters in RViz as 

follows: 

• un-check the Collision Enabled checkbox 

• set the Fixed Frame to /base_link under Global Options 

• open the Links list under the RobotModel display set the Alpha value for the 

base_link to something like 0.3 and check the checkbox labeled Show Axes 
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• un-check the checkboxes under the Links section for all the links except the 
base_link 

The resulting view in RViz should look something like this: 

 

As you can see, this particular mesh defines its origin in the center of the bottom of the 

base.  (Recall that a box or cylinder component has the origin in the middle of the 

component.)  Fortunately the axes are oriented the way we want with the x-axis 

pointing in the robot's forward direction. 

The ground clearance of the robot can now be seen to be simply the difference between 

the wheel radius and the wheels z-offset.  So the <joint> definition for the 

base_footprint link looks like this: 

  <joint name="base_joint" type="fixed"> 
    <origin xyz="0 0 ${wheel_offset_z - wheel_radius}" rpy="0 0 0" />         
    <parent link="base_link"/> 
    <child link="base_footprint" /> 
  </joint> 

The top-level URDF/Xacro model that includes the mesh base is stored in the file 

pi_robot_base_only.xacro in the rbx2_templates/urdf/pi_robot directory 

and it looks like this: 
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<?xml version="1.0"?> 
<robot name="pi_robot"> 
   <!-- Include all component files --> 
   <xacro:include filename="$(find rbx2_description)/urdf/materials.urdf.xacro" 
/> 

   <xacro:include filename="$(find rbx2_description)/urdf/pi_base.urdf.xacro" /> 

    
   <!-- Add the base and wheels --> 
   <base name="base" color="Black"/> 

</robot> 

As you can see, the file is quite simple.  First we add a name for our robot to the 

opening <robot> tag.  Then we include two macro files, the materials file that defines 

various colors and the base macro file we just created.  Finally, we add the base to the 

robot by calling the <base> macro and a desired color. 

As we will see, adding a torso, camera and arm are just as straightforward. 

 4.2  Simplifying Your Meshes 

Using 3D models for your robot components makes for nicer looking graphics in RViz 

but it can also put a load on your computer's CPU.  It therefore pays to simply your 

meshes as much as possible using a tool such as MeshLab.  The biggest gains are 

achieved by reducing the number of vertices and faces in the mesh.  In MeshLab, this 

can be done by running the three filters Merge Close Vertices, Remove Duplicated 

Vertex, and Remove Duplicate Faces.  All three functions can be found under the 

menu Filters→Cleaning and Repairing. 

Of course, if you are already familiar with another CAD program such as SolidWorks or 

AutoCad, you can probably find similar functions to simplify a mesh.  If you can also 

find a function to place the coordinate axes in the center of the component, even better. 

 4.3  Adding a Torso 

Now that we have laid the ground work for the base and wheels, adding a torso is 

relatively straightforward.  Let's begin with the box-and-cylinder version.  In this case, 

we will add a vertical 1"x1" post resembling a section of 8020 T-slot.  To see how it will 

look, terminate any running URDF launch files and run the following launch file 

instead: 

$ roslaunch rbx2_description box_robot_with_torso.launch 
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If RViz is not still running, bring it up now: 

$ rosrun rviz rviz -d `rospack find rbx2_description`/urdf.rviz The 

view in RViz should look something like the image below: 

 

(Remember to toggle the checkbox beside the RobotModel display if you are still 

seeing a previously loaded model.)  

Change the Fixed Frame back to /base_footprint if you still have it set to 

/base_link from the previous section. 

Note how the new torso_link is listed under the Links section of the RobotModel 

display in the left hand panel.  You can turn off the display of the torso by un-checking 

the checkbox beside the link name. 

 4.3.1  Modeling the torso 

Let's look at the URDF/Xacro file torso.urdf.xacro defining the torso: 

<?xml version="1.0"?> 
<robot> 
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  <!-- Define a number of dimensions using properties --> 
  <property name="torso_size_x" value="0.0254" /> 
  <property name="torso_size_y" value="0.0254" /> 
  <property name="torso_size_z" value="0.7" /> 

      
  <!-- Define the torso --> 
  <macro name="torso" params="parent name color *origin"> 
    <joint name="${parent}_${name}_joint" type="fixed"> 
      <xacro:insert_block name="origin" /> 
      <parent link="${parent}_link"/> 
      <child link="${name}_link"/> 
    </joint> 
    <link name="${name}_link"> 
      <visual> 
        <origin xyz="0 0 0" rpy="0 0 0" /> 
        <geometry> 
          <box size="${torso_size_x} ${torso_size_y} ${torso_size_z}" /> 
        </geometry> 
        <material name="${color}" /> 
      </visual> 
      <collision> 
        <origin xyz="0 0 0" rpy="0 0 0" /> 
        <geometry> 
          <box size="${torso_size_x} ${torso_size_y} ${torso_size_z}" /> 
        </geometry> 
      </collision> 
    </link> 
  </macro> 

</robot> 

At the top of the file we define the dimensions of the torso as a post 0.7 meters tall and 

1" x 1" in cross-section.  We then define the torso macro as a <joint> and a <link>.  

The joint block connects the torso to the parent link which is passed as the parent 

parameter to the macro.  The point of attachment is determined by the *origin block 

parameter which is also passed to the macro.  Recall from the URDF Xacro tutorial that 

a block parameter is inserted using the <xacro:insert_block> tag as we see above.  

We'll see how to pass the *origin parameter in the next section. 

 4.3.2  Attaching the torso to the base 

Attaching the torso to the base occurs in the file box_robot_with_torso.xacro 

found in the rbx2_description/urdf/box_robot directory.  This is our new 

toplevel robot model and it looks like this: 

<?xml version="1.0"?> 
<robot name="box_robot"> 
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   <!-- Define a number of dimensions using properties --> 
   <property name="torso_offset_x" value="-0.13" /> 
   <property name="torso_offset_y" value="0.0" /> 
   <property name="torso_offset_z" value="0.41" /> 

   <!-- Include all component files --> 
   <xacro:include filename="$(find rbx2_description)/urdf/materials.urdf.xacro" 
/>    <xacro:include filename="$(find rbx2_description)/urdf/base.urdf.xacro" /> 

   <xacro:include filename="$(find rbx2_description)/urdf/torso.urdf.xacro" /> 

    
   <!-- Add the base and wheels --> 
   <base name="base" color="Black"/> 

    
   <!-- Add the torso --> 
   <torso name="torso" parent="base" color="Grey"> 
      <origin xyz="${torso_offset_x} ${torso_offset_y} ${torso_offset_z}" rpy="0  
0 0" /> 
   </torso> 

</robot> 

As you can see, the file is similar to our base-only robot model.  First we add the three 

torso offset parameters that determine where the torso is attached to the base.  We also 

include the torso.urdf.xacro file.  Finally, we attach the torso to the base by calling 

the <torso> macro with the parent parameter set to "base" and the xyz part of the  

<origin> block parameter set to the torso offset values.  Note that we could also 

assign orientation values to the rpy parameter but in this case the default vertical 

orientation of the torso is what we want. 

 4.3.3  Using a mesh for the torso 

Pi Robot uses an 8020 T-slot post for a torso.  As it turns out, the 3D Warehouse for 

Google Sketchup has a model for just such an item so we can use it as a mesh.  Pi's 

mesh torso is defined in the file pi_torso.urdf.xacro in the directory 

rbx2_description/meshes/pi_robot.  The file looks like this: 

<?xml version="1.0"?> 
<robot> 

  <!-- Define a number of dimensions using properties --> 
  <property name="torso_size_x" value="0.025" /> 
  <property name="torso_size_y" value="0.025" /> 
  <property name="torso_size_z" value="0.885" /> 

   
  <property name="torso_mesh_scale" value="0.0128" /> 

   
  <!-- Define the torso --> 
  <macro name="torso" params="parent name color *origin"> 
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    <joint name="${parent}_${name}_joint" type="fixed"> 
      <xacro:insert_block name="origin" /> 
      <parent link="${parent}_link"/> 
      <child link="${name}_link"/> 
    </joint> 
    <link name="${name}_link"> 
      <visual> 
        <origin xyz="0 0 0" rpy="0 0 0" /> 
        <geometry> 
           <mesh  
filename="package://rbx2_description/meshes/pi_robot/t_slot.stl" scale="$ 
{torso_mesh_scale} ${torso_mesh_scale} ${torso_mesh_scale}" /> 
        </geometry> 
        <material name="${color}" /> 
      </visual> 
      <collision> 
        <origin xyz="0 0 0" rpy="0 0 0" /> 
        <geometry> 
          <box size="${torso_size_x} ${torso_size_y} ${torso_size_z}" /> 
        </geometry> 
      </collision> 
    </link> 
  </macro> 
</robot> 

The <torso> macro takes the parent and *origin as parameters so we know how to 

attach it to the robot.  As with Pi Robot's base mesh, we include a <mesh> tag in the 

geometry section of the <link> block.  In this case, the mesh filename points to the 

package location of the t_slot.stl file.  We also scale the mesh by a factor stored in 

the property torso_mesh_scale.  As it turns out, we need a value of 0.0127 to make the 

scale the T-slot mesh the same as the rest of the robot. 

 4.3.4  Adding the mesh torso to the mesh base 

Adding the mesh torso to the rest of Pi Robot is the same as we did for the Box Robot.  

To see how it looks, run the following launch file: 

$ roslaunch rbx2_description pi_robot_with_torso.launch 

If RViz is not still running, bring it up now: 

$ rosrun rviz rviz -d `rospack find rbx2_description`/urdf.rviz 

The view in RViz should look like the following: 
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(Remember to toggle the checkbox beside the RobotModel display if RViz is still 

showing a previously loaded model.) 

 The top-level URDF/Xacro file for this version of Pi Robot is called  

pi_robot_with_torso.xacro in the directory 

rbx2_description/urdf/pi_robot and looks like this: 

<?xml version="1.0"?> 
<robot name="box_robot"> 

   <!-- Define a number of dimensions using properties --> 
   <property name="torso_offset_x" value="-0.13" /> 
   <property name="torso_offset_y" value="0.0" /> 
   <property name="torso_offset_z" value="0.088" /> 

   <!-- Include all component files --> 
   <xacro:include filename="$(find rbx2_description)/urdf/materials.urdf.xacro" 
/> 

   <xacro:include filename="$(find  
rbx2_description)/urdf/pi_robot/pi_base.urdf.xacro" /> 

   <xacro:include filename="$(find  
rbx2_description)/urdf/pi_robot/pi_torso.urdf.xacro" /> 

    
   <!-- Add the base and wheels --> 
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   <base name="base" color="Black"/> 

    
   <!-- Add the torso --> 
   <torso name="torso" parent="base" color="Grey"> 
      <origin xyz="${torso_offset_x} ${torso_offset_y} ${torso_offset_z}" rpy="0  
0 0" /> 
   </torso> 

</robot> 

As with the Box Robot model, first we define the torso offsets relative to the base.  

Then we include the materials file and the two mesh macro files, one for the base and 

one for the torso.  Finally, we call the base macro followed by the torso macro with the 

origin block parameters set to the desired point of attachment. 

 4.4  Measure, Calculate and Tweak 

Getting model components to line up correctly can sometimes be a little tricky.  Unless 

you are really good at visualizing objects in 3D, figuring out offsets and rotation angles 

sometimes takes a bit of trial and error. 

If you are using meshes for your parts, get out a ruler and measure them as well.  Set 

these dimensions as properties in your URDF/Xacro files so that you can use simple 

boxes and cylinders for the <collision> blocks.  You can also use the dimensions in 

your offsets.  For example, if you know that part A is displaced in the x-direction from 

part B by half the width of part A, then use an expression such as ${A_WIDTH/2} as the 

x-component of the joint connecting the two parts. 

Even with meshes and careful measurements, you may see gaps or overlaps of the robot 

parts in RViz.  This is the "tweaking" part of the process.  Change your offsets by small 

amounts and check RViz for the result.  It is often helpful to set the Alpha values for a 

component to something less that 1 (e.g 0.5) so that you can see if another component 

is actually penetrating it.  Then adjust the offset until the parts no longer overlap. 

 4.5  Adding a Camera 

The procedure for adding a camera to the robot is nearly identical to adding the torso.  

We will add a camera to the torso but you could use the same method to add it directly 

to the base if your robot does not have a torso.  For our Box Robot, we will start with a 

model that uses the same dimensions as the Kinect for the camera. 

Before looking at the URDF files, let's view the final result using the following 

command: 
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$ roslaunch rbx2_description box_robot_with_kinect.launch 

If RViz is not still running, bring it up now: 

$ rosrun rviz rviz -d `rospack find rbx2_description`/urdf.rviz 

The view in RViz should look like this: 

 

As you can see, we have modeled the Kinect using three pieces: a box for the base, a 

cylinder for the supporting post and another box for the camera body.  Let's now look at 

the details. 

 4.5.1  Placement of the camera 

Bear in mind that current depth cameras like the Kinect and Xtion Pro cannot compute 

the distance to an object that lies within about 0.5 meters (about 2 feet) of the camera.  

If you ultimately plan for your robot to use an arm and gripper to pick up objects, then it 

is generally a good idea to mount the camera fairly high up on the robot.  This is one of 

the reasons we are using a long torso on our robot model.  By placing the camera high 

above the base, the robot can look down at a table surface or the ground and objects will 

be outside of its blind spot.  The camera's depth image can then be used to compute the 

3D pose of objects and guide the motion of an arm during a pick and place task. 
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Another reason to mount the camera higher up on the robot is so that it will be at a 

better height for face detection and recognition if you plan for your robot to interact 

with people. 

 4.5.2  Modeling the camera 

The box Kinect URDF/Xacro file is called kinect_box.urdf.xacro in the directory 

rbx2_description/urdf/box_robot and the first part of the file looks like this: 

   <property name="kinect_body_x" value="0.07271" /> 
   <property name="kinect_body_y" value="0.27794" /> 
   <property name="kinect_body_z" value="0.033" /> 

    
   <property name="kinect_base_x" value="0.072" /> 
   <property name="kinect_base_y" value="0.085" /> 
   <property name="kinect_base_z" value="0.021" /> 

    
   <property name="kinect_base_post_height" value="0.016" /> 
   <property name="kinect_base_post_radius" value="0.005" /> 

   <property name="PI" value="3.1415" /> 

          
   <!-- Define a box-shaped camera link for the Kinect --> 
   <macro name="camera" params="parent name color *origin"> 
      <joint name="${parent}_${name}_joint" type="fixed"> 
         <xacro:insert_block name="origin" /> 
         <parent link="${parent}_link"/> 
         <child link="${name}_base_link"/> 
      </joint> 

       
      <link name="${name}_base_link"> 
         <visual> 
            <origin xyz="0 0.0 0.0" rpy="0 0 0" /> 
            <geometry> 
               <box size="${kinect_base_x} ${kinect_base_y} ${kinect_base_z}"/> 
            </geometry> 
            <material name="${color}" /> 
         </visual> 
         <collision> 
            <origin xyz="0 0 0" rpy="0 0 0" /> 
            <geometry> 
               <box size="${kinect_base_x} ${kinect_base_y} ${kinect_base_z}"/> 
            </geometry> 
         </collision> 
      </link> 

First we store the dimensions of the Kinect in a number of properties separating out the 

three pieces: the base, the supporting post, and the camera body. 
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Next we define a box-shaped link for the camera base and a joint that connects it to the 

parent link (which will be the torso as we will see in the next section).  Note how we 

use the variable ${name} instead of the fixed string "camera" for the prefix for the link 

and joint names.  This allows us to attach more than one camera if desired and give each 

camera a different name which then propagates through its set of links and joints. 

     <joint name="camera_base_post_joint" type="fixed"> 
         <origin xyz="0 0 ${(kinect_base_z + kinect_base_post_height)/2}" rpy="0  
0 0" /> 
         <parent link="${name}_base_link" /> 
         <child link="${name}_base_post_link" /> 
      </joint> 

       
      <link name="${name}_base_post_link"> 
         <visual> 
            <origin xyz="0 0 0" rpy="0 0 0" /> 
            <geometry> 
               <cylinder radius="${kinect_base_post_radius}" length="$ 
{kinect_base_post_height}"/> 
            </geometry> 
            <material name="${color}" /> 
         </visual> 
         <collision> 
            <origin xyz="0 0 0" rpy="0 0 0" /> 
            <geometry> 
               <cylinder radius="${kinect_base_post_radius}" length="$ 
{kinect_base_post_height}"/> 
            </geometry> 
         </collision> 
      </link> 

     
      <joint name="${name}_base_joint" type="fixed"> 
         <origin xyz="0 0 ${(kinect_base_post_height + kinect_body_z)/2}" rpy="0  
0 0" /> 
         <parent link="${name}_base_post_link" /> 
         <child link="${name}_link" /> 
      </joint> 

       
      <link name="${name}_link"> 
         <visual> 
            <origin xyz="0 0 0" rpy="0 0 0" /> 
            <geometry> 
               <box size="${kinect_body_x} ${kinect_body_y} ${kinect_body_z}"/> 
            </geometry> 
            <material name="${color}" /> 
         </visual> 
         <collision> 
            <origin xyz="0 0 0" rpy="0 0 0" /> 
            <geometry> 
               <box size="${kinect_body_x} ${kinect_body_y} ${kinect_body_z}"/> 
            </geometry> 
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         </collision> 
      </link> 

Here the construction process continues as we attach the cylindrical post to the camera 

base at the bottom and the camera body at the top. 

The rest of the URDF/Xacro file defines the relationship between the various optical 

and depth frames of the camera.  The offsets were copied from the "official" Kinect 

URDF file found in the turtlebot_description package.  For example, the relation 

between the camera body (camera_link frame) and the depth frame is given by the 

block: 

      <joint name="${name}_depth_joint" type="fixed"> 
         <origin xyz="0 0.0125 0" rpy="0 0 0" /> 
          <parent link="${name}_link" /> 
          <child link="${name}_depth_frame" /> 
      </joint> 

Here we see that the depth frame is laterally displace from the center of the camera 

body by 1.25 cm.  This relation as well as the others specified in the camera file enable 

the robot_state_publisher to include the various camera reference frames in the 

tf tree. This in turn connects the camera frames to the rest of the robot which allows 

the robot to view an object in the depth frame but know where it is relative to the robot's 

base (for example).  All the complicated frame transformations are done for you by 

ROS thanks to the tf library. 

 4.5.3  Adding the camera to the torso and base 

Attaching the Kinect to the torso occurs in the file box_robot_with_kinect.xacro 

found in the rbx2_description/urdf/box_robot directory.  This is our new 

toplevel robot model and it looks like this: 

<?xml version="1.0"?> 
<robot name="box_robot"> 

   <!-- Define a number of dimensions using properties --> 
   <property name="torso_offset_x" value="-0.13" /> 
   <property name="torso_offset_y" value="0.0" /> 
   <property name="torso_offset_z" value="0.41" /> 

      
   <property name="camera_offset_x" value="0.0" /> 
   <property name="camera_offset_y" value="0.0" /> 
   <property name="camera_offset_z" value="0.3605" /> 

   <!-- Include all component files --> 
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   <xacro:include filename="$(find rbx2_description)/urdf/materials.urdf.xacro" 
/> 

   <xacro:include filename="$(find  
rbx2_description)/urdf/box_robot/base.urdf.xacro" /> 

   <xacro:include filename="$(find  
rbx2_description)/urdf/box_robot/torso.urdf.xacro" /> 

   <xacro:include filename="$(find  
rbx2_description)/urdf/box_robot/kinect_box.urdf.xacro" /> 

    
   <!-- Add the base and wheels --> 
   <base name="base" color="Black"/> 

    
   <!-- Add the torso --> 
   <torso name="torso" parent="base" color="Grey"> 
      <origin xyz="${torso_offset_x} ${torso_offset_y} ${torso_offset_z}" rpy="0  
0 0" /> 
   </torso> 

   <!-- Add the camera --> 
   <camera name="camera" parent="torso" color="Black"> 
      <origin xyz="${camera_offset_x} ${camera_offset_y} ${camera_offset_z}" 
rpy="0 0 0" />    </camera> 

</robot> 

As you can see, the file is similar to our base-plus-torso robot model.  First we add the 

three camera offset parameters that determine where the camera is attached to the torso.  

We also include the kinect_box.urdf.xacro file.  Next we attach the torso to the 

base using the <torso> macro and finally, we attach the camera to the torso by calling 

the <camera> macro with the parent parameter set to the torso and the origin 

parameters set to the camera offset values. 

To use an Asus Xtion Pro camera instead of a Kinect, terminate the previous launch file 

and run the command: 

$ roslaunch rbx2_description box_robot_with_xtion.launch 

If RViz is not still running, bring it up now: 

$ rosrun rviz rviz -d `rospack find rbx2_description`/urdf.rviz 

This launch file calls up the box_robot_with_xtion.xacro model which is nearly 

identical to the Kinect version but uses different box dimensions for the Xtion. 
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 4.5.4  Viewing the transform tree with torso and camera 

The transform tree of our robot should now be a little more interesting.  Let's use  

view_frames to take a look at it: 

 

This will create a PDF file called frames.pdf in the current directory.  It can be 

viewed using using any PDF reader such as evince: 

 

And the tf tree should look like the following: 

 

$ cd /tmp 
$ rosrun tf view_frames 

$ evince frames.pdf 



 

 Creating a URDF Model for your Robot - 123 

Note how the /base_link frame connects to the /torso_link which in turn 

connects to the /camera_link.  The /camera_link then branches into depth frames 

on the left and RGB frames on the right.  Each arc represents the coordinate 

transformation between adjacent links and not only does the 

robot_state_publisher continually update these transformations should any of the 

links move, it also computes the transformations between non-adjacent links by 

combining the transforms along the path that connects them.  For example,  if a ROS 

vision node detects an object in the camera depth frame, we can use the tf library to get 

its coordinates in the base frame. 

 4.5.5  Using a mesh for the camera 

An 3D model for the Kinect has been available in the TurtleBot ROS packages for quite 

some time and we have copied a simplified version of it into the rbx2_description 

package under the meshes subdirectory.  The macro using the mesh can be found in the 

file kinect.urdf.xacro in the directory rbx2_description/urdf/pi_robot.   

And the model for Pi Robot that uses the mesh along with the base and torso camera is 

called pi_robot_with_kinect.xacro. 

The description of these files is essentially the same as we have already covered so let 

us simply fire up the model to see how it looks: 

$ roslaunch rbx2_description pi_robot_with_kinect.launch 

If RViz is not still running, bring it up now: 

$ rosrun rviz rviz -d `rospack find rbx2_description`/urdf.rviz 

And the view in RViz should look like the following:  
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And here is closer view of the mesh including the coordinate axes for the depth and 

RGB camera frames: 
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 4.5.6  Using an Asus Xtion Pro instead of a Kinect 

The rbx2_description package includes launch files and URDF/Xacro models for 

both the Box Robot and Pi Robot using an Asus Xtion Pro camera instead of a Kinect.   

To launch the Box Robot model with the Xtion, use the command: $ roslaunch 

rbx2_description box_robot_with_xtion.launch  

If RViz is not still running, bring it up now: 

$ rosrun rviz rviz -d `rospack find rbx2_description`/urdf.rviz 

And to launch the Pi Robot model with a mesh version of the Xtion Pro, run the 

command: 

$ roslaunch rbx2_description pi_robot_with_xtion.launch 

 4.6  Adding a Laser Scanner (or other Sensors) 

Adding a laser scanner or another type of sensor to your robot is relatively 

straightforward.  Just as we did for the torso or camera, first we need a model of the 

sensor itself which could just be a box or cylinder of a certain size.  Then we need to 

attach it to the robot at the appropriate location. 

 4.6.1  Modeling the laser scanner 

A box-and-cylinder model of a Hokuyo laser scanner can be found in the file 

laser.urdf.xacro under rbx2_description/urdf/sensors.  The model is 

fairly simple so we won't list it out here.  The file box_robot_with_laser.xacro 

shows how to attach the laser to the base: 

<?xml version="1.0"?> 
<robot name="box_robot"> 

   <!-- Define a number of dimensions using properties --> 
   <property name="laser_offset_x" value="0.123" /> 
   <property name="laser_offset_y" value="0.0" /> 
   <property name="laser_offset_z" value="0.08" /> 

   <!-- Include all component files --> 
   <xacro:include filename="$(find rbx2_description)/urdf/materials.urdf.xacro" 
/> 

   <xacro:include filename="$(find  
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rbx2_description)/urdf/box_robot/base.urdf.xacro" /> 
   <xacro:include filename="$(find  
rbx2_description)/urdf/sensors/laser.urdf.xacro" /> 

    
   <!-- Add the base and wheels --> 
   <base name="base" color="Black"/> 

    
   <!-- Add the laser --> 
   <laser parent="base" color="DarkGrey"> 
      <origin xyx="${laser_offset_x} ${laser_offset_y} ${laser_offset_z}" rpy="0  
0 0 " /> 
   </laser> 

</robot> 

To see how it looks in RViz, terminate any current URDF launch files and run: 

$ roslaunch rbx2_description box_robot_base_with_laser.launch 

If RViz is not still running, bring it up now: 

 

$ rosrun rviz rviz -d `rospack find rbx2_description`/urdf.rviz 
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In the image above, we have checked the Show Axes checkbox for the base_laser 

link.  This allows us to see that the base laser frame is located in the middle of the upper 

cylinder and that the axes are oriented in the same direction as the base.  (Remember 

that the red axis is in the x-direction and that we want it pointing forward.) 

Other sensors can be added in the same way.  For example, if you have a Ping(TM) 

sonar sensor mounted on the robot, you could model it as a single cylinder and then 

attach that model to the base the same way we did for the laser scanner. 

 4.6.2  Attaching a laser scanner (or other sensor) to a mesh base 

We can use the same laser.urdf.xacro file to add the scanner to Pi Robot's mesh 

base.  The file that does the trick is pi_robot_base_with_laser.xacro in the 

directory rbx2_description/urdf/pi_robot.  The file is nearly identical to the 

one we used for Box Robot but now we include the mesh for the base and adjust the 

offsets for the laser scanner to place it in the right place.  To see the result, terminate the 

box model launch file and run the command: 

$ roslaunch rbx2_description pi_robot_base_with_laser.launch 

If RViz is not still running, bring it up now: 

$ rosrun rviz rviz -d `rospack find rbx2_description`/urdf.rviz 

The view in RViz should look like this:  
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 4.6.3  Configuring the laser node launch file 

Once you have added your laser scanner or other sensor to your URDF model, you still 

need to launch a node for the device itself.  In the case of a Hokuyo laser scanner, you 

can use the Hokuyo node that has been available in most versions of ROS since the 

beginning.  A sample launch file called hokuyo.launch can be found in the 

rbx2_bringup/nodes directory and looks like this: 

<launch> 
  <param name="/use_sim_time" value="false" /> 

  <!-- Run the Hokuyo laser scanner node --> 
  <node name="hokuyo" pkg="hokuyo_node" type="hokuyo_node"> 
    <param name="min_ang" value="-1.7" /> 
    <param name="max_ang" value="1.7" /> 
    <param name="hokuyo_node/calibrate_time" value="true" /> 
    <param name="frame_id" value="/base_laser" /> 
  </node> 
</launch> 

The min_ang and max_ang parameters (given in radians) should match your scanner's 

specs* and the frame_id parameter needs to be set to the value you used in your 

URDF model.  The frame_id is what allows tf to locate the points in the laser scan in 

proper geometric relation to the rest of your robot. 
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* Note: you might actually need to set the min_ang and max_ang values smaller than 

the full range of your scanner if parts of the robot get in the way of the full range as in 

the image above of Pi Robot's base. 

 4.7  Adding a Pan and Tilt Head 

Placing the camera on a pair of pan and tilt servos can add a lot of functionality to your 

robot.  However, modeling the servos and the joints between them can be a little tricky.  

Fortunately, the folks at Willow Garage long ago created a URDF/Xacro model of the 

TurtleBot arm which uses the same Dynamixel servos and brackets that we will use for 

our pan-and-tilt head. 

For our Box Robot, we will use simple boxes to model the servos and brackets.  You 

can try it out using the following command: 

$ roslaunch rbx2_description box_robot_with_pan_tilt_head.launch 

If RViz is not still running, bring it up now: 

$ rosrun rviz rviz -d `rospack find rbx2_description`/urdf.rviz 

After a toggling the Robot Model display, the view should look like the following: 
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In the meantime, the Joint State Publisher window will 

now include two new slider controls for the pan and tilt 

joints as shown on the right.   For the image above, the 

controls were used to pan the head to the left and tilt it 

downward.  With the Links sub-menu expanded under 

the RobotModel display, we can see the links that make 

up the brackets and servos of the pan-and-tilt head. 

NOTE: Recall that ROS uses the right-hand rule for 

coordinate frames and rotations with the base frame 

oriented with the x-axis pointing forward, the y-axis 

pointing to the left, and the z-axis pointing straight up. 

Since we have mounted the torso and camera directly onto the base without any explicit 

rotational offsets, the camera's base frame and pan servo also have their z-axis pointing 

straight upward.  Using the right-hand rule with the thumb pointing along the z-axis and 

the fingers curling in the direction of the rotation, we see that a positive panning of the 

camera should rotate it to the left which you can confirm with the slide controls.  

Similarly, the y-axis of the head-tilt servo body points to the left when the camera is 

pointing forward.  Pointing your thumb in this direction, the fingers curl downward 

indicating that a positive tilt rotation should rotate the camera downward which you can 

again verify with the slide controls. 

 4.7.1  Using an Asus Xtion Pro instead of a Kinect 

To use an Asus Xtion Pro camera instead of a Kinect on the pan-and-tilt head, run the 

following launch file: 

$ roslaunch rbx2_description box_robot_with_pan_tilt_head_xtion.launch  

If RViz is not still running, bring it up now: 

$ rosrun rviz rviz -d `rospack find rbx2_description`/urdf.rviz 

If RViz is still running from a previous session, don't forget to toggle the checkbox 

beside the RobotModel display to update the model. 

 4.7.2  Modeling the pan-and-tilt head 

The overall model for this robot is found in the file  

box_robot_with_pan_tilt_head.xacro in the directory 

rbx2_description/urdf/box_robot.  This file is nearly the same as the 

box_robot_with_kinect.xacro file we examined earlier although this time we 
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include the file box_pan_tilt_head.urdf.xacro instead of the 

kinect.urdf.xacro file.  The box_pan_tilt_head.urdf.xacro itself includes 

the kinect.urdf.xacro as well as the link and joint definitions for the servos and 

brackets.  This way we can attach the camera to the head tilt bracket.  The 

box_pan_tilt_head.urdf.xacro file also includes another file called 

dynamixel_box_hardware.xacro.  This file defines a number of properties to hold 

the dimensions of the servos and various types of Dynamixel brackets.  It also defines a 

collection of macros that models the servos and brackets using simple boxes.  (We'll use 

meshes for Pi Robot below.) 

We won't go through the servo URDF/Xacro files line-by-line as we have done with the 

other components as it would take too much space.  The basic idea is that we define a 

link for each servo and bracket and joints in between them.  However, let's at least look 

at a couple of XML blocks that illustrate how to model revolute joints.  Referring to the 

file box_pan_tilt_head.urdf.xacro, the following lines define the head_pan 

joint and link in terms of an AX12 servo and F3 bracket: 

    <dynamixel_AX12_fixed parent="head_base" name="head_pan_servo"> 
       <origin xyz="-0.012 0 ${-AX12_WIDTH/2}" rpy="${M_PI/2} 0 ${-M_PI/2}"/> 
    </dynamixel_AX12_fixed> 

     
    <bioloid_F3_head_revolute parent="head_pan_servo" name="head_pan_bracket" 
joint_name="head_pan" ulimit="2.53" llimit="-2.53" vlimit="1.571" color="$ 
{color}"> 
       <origin xyz="0 ${AX12_WIDTH/2 + 0.005} 0.012" rpy="${-PI/2} ${PI/2} $ 
{PI}" /> 
       <axis xyz="0 0 -1" /> 
    </bioloid_F3_head_revolute> 

The macro called dynamixel_AX12_fixed can be found in the file 

dynamixel_box_hardware.xacro and looks like this: 
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  <macro name="dynamixel_AX12_fixed" params="parent name *origin"> 
    <joint name="${name}_joint" type="fixed"> 
      <xacro:insert_block name="origin" /> 
      <parent link="${parent}_link"/> 
      <child link="${name}_link" /> 
    </joint> 

    <link name="${name}_link"> 
      <inertial> 
        <mass value="0.00001" /> 
        <origin xyz="0 0 0" /> 
        <inertia ixx="1.0" ixy="0.0" ixz="0.0" 
          iyy="1.0" iyz="0.0"           
izz="1.0" />       </inertial> 

      <visual> 
        <origin xyz="0 0 0 " rpy="0 0 0" /> 
        <geometry> 
           <box size="${AX12_HEIGHT} ${AX12_WIDTH} ${AX12_DEPTH}"/> 
        </geometry> 
        <material name="Black"/> 
      </visual> 

      <collision> 
        <origin xyz="0 0 -0.01241" rpy="0 0 0" /> 
        <geometry> 
          <box size="${AX12_HEIGHT} ${AX12_WIDTH} ${AX12_DEPTH}"/> 
        </geometry> 
      </collision> 
    </link> 
  </macro> 

This macro is fairly straightforward—it defines the link as a box with the same 

dimensions of an AX-12 servo and it defines a fixed joint between itself and the parent 

which in this case is the head_base_link. 

The second macro above,  bioloid_F3_head_revolute, does the work of actually 

panning the head.  This macro is also defined in the 

dynamixel_box_head_hardware.xacro file and looks like this: 

  <macro name="bioloid_F3_head_revolute" params="parent name joint_name llimit 
ulimit color *origin *axis"> 
    <joint name="${joint_name}_joint" type="revolute"> 
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      <insert block name="origin"/> 
      <insert block name="axis"/> 
      <parent link="${parent}_link"/> 
      <limit lower="${llimit}" upper="${ulimit}" velocity="${vlimit}"    
effort="1.0" /> 
      <child link="${name}_link" /> 
    </joint> 

    <link name="${name}_link"> 
      <inertial> 
        <mass value="0.00001" /> 
        <origin xyz="0 0 0" /> 
        <inertia ixx="1.0" ixy="0.0" 
ixz="0.0"           iyy="1.0" iyz="0.0"           
izz="1.0" />       </inertial> 

      <visual> 
        <origin xyz="0 0 0 " rpy="0 0 0" /> 
        <geometry> 
          <box size="${F3_DEPTH} ${F3_WIDTH} ${F3_HEIGHT}"/> 
        </geometry> 
        <material name="${color}"/> 
      </visual> 

      <collision> 
        <origin xyz="0 0 0" rpy="0 0 0" /> 
        <geometry> 
          <box size="${F3_DEPTH} ${F3_WIDTH} ${F3_HEIGHT}"/> 
        </geometry> 
      </collision> 
    </link> 
  </macro> 

Note how the joint type in this case (highlighted in bold above) is revolute instead of 

fixed.  A revolute joint takes parameters lower and upper for the lower and upper  

rotation limits, specified in radians.  These are set for a particular joint by passing the 

values ${llimit} and ${ulimit} in the code above.  An AX-12 servo has an 

operating range of 300 degrees, so 150 degrees to either side of center.  The value of  

2.53 radians that is passed in for the lower and upper limits in the 

bioloid_F3_head_revolute definition above is about 145 degrees—just a little less 

than the full range so we don't force the servo against its own limits. 

The joint also takes parameters velocity and effort which are limits on its 

dynamics that should be respected by a real servo controller.  A velocity limit of 1.571 

radians per second is equivalent to about 90 degrees per second which is moderately 

fast, especially if the servo is panning a camera.  Although we have set the effort to 1.0 

to show the syntax, neither the dynamixel_motor nor the arbotix package makes 

use of this value. 
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Another key property of a revolute joint is this <axis> tag, also highlighted in bold 

above.  The xyz components of the axis tag are typically either 0 or 1 and define the 

rotation axis of the joint.  These parameters are passed as a block argument called axis 

similar to the way we pass the origin parameters.   In the case of the head pan joint, 

we pass the values "0 0 -1" which defines a rotation in the negative z-direction.  In 

the next section we'll show how these axis components are determined. 

 4.7.3  Figuring out rotation axes 

How did we know to choose the negative z-direction for the head pan rotation?  Take a 

look at the image below: 

 

Here we have set the Alpha value for the RobotModel display to 0.5 so that we can 

see the link and joint frames more easily.  Next, we have set the Link Tree Style to 

Joints in Alphabetical Order instead of the default Links in Alphabetical Order.  

Looking down the list of joints, we find the head_pan_joint and check the box 

beside  Show Axes.  Referring back to the image above, we see that panning the head 

requires a rotation around the z-axis (shown in blue in RViz) but that the reference 

frame is inverted with the z-axis pointing downward.  Therefore, we need to specify the 

rotation axis as the negative z-axis ("0 0 -1" in the URDF model) which would then 

be pointing upward.  If you use the right-hand rule and point your thumb upward, your 
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fingers should curl in the direction of counter-clockwise rotation of the head which is 

the convention ROS uses to define a positive rotation.  You can verify that this is the 

case by returning to the joint state GUI and moving the head_pan_joint slider 

control toward increasing values (i.e. to the right).  The head should then pan counter-

clockwise as a result. 

You can apply this same analysis to any joint for which you need to figure out the 

rotation axis.  First, turn on the axes display for the joint in question and use the 

righthand rule to determine the sign of the axis the joint rotates around.  If you do the 

same analysis for the head_tilt_joint, you will see that the rotation is around the 

positive y-axis (shown in green in RViz) so we pass the values "0 1 0" for the axis 

parameter for the head tilt joint in our URDF model. 

 4.7.4  A pan and tilt head using meshes on Pi Robot 

We can also use meshes for the Dynamixel servos and brackets thanks to craftsmanship 

of Michael Overstreet, aka I-Bioloid at Thingverse.  Mike's mesh files were used in the 

URDF model for the original TurtleBot arm and with Mike's permission, they have been 

copied to the directory rbx2_description/meshes to be used here as well.  To see 

how they look, run the following launch file: 

$ roslaunch rbx2_description pi_robot_with_pan_tilt_head.launch 

If RViz is not still running, bring it up now: 

$ rosrun rviz rviz -d `rospack find rbx2_description`/urdf.rviz 

The view in RViz should then look something like the following: 
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 4.7.5  Using an Asus Xtion Pro mesh instead of a Kinect on Pi Robot 

To use a mesh for an Asus Xtion Pro camera instead of a Kinect on the pan-and-tilt head 

on Pi Robot, run the following launch file: 

$ roslaunch rbx2_description pi_robot_with_pan_tilt_head_xtion.launch  

If RViz is not still running, bring it up now: 

$ rosrun rviz rviz -d `rospack find rbx2_description`/urdf.rviz 

If RViz is still running from a previous session, don't forget to toggle the checkbox 

beside the RobotModel display to update the model. 

 4.8  Adding One or Two Arms 

The final component we will add to the robot is a multi-jointed arm made up of revolute 

joints modeled as Dynamixel servos and brackets.  We will use six joints thereby giving 

the arm six degrees of freedom (DOF).  This is the minimum number of joints required 

for a general purpose arm if the goal is to grasp objects in space.  This is because a 

3dimensional object requires 6 numbers to specify both its position and orientation.  So 
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to place a gripper with the correct position and orientation to grasp an object, the arm 

needs at least 6 degrees of freedom.  (More on this in the chapter on Arm Navigation.) 

 4.8.1  Placement of the arm(s) 

If you plan for your robot to use depth information from its camera to guide its arm and 

gripper to pick up objects, then keep in mind the fact that the Kinect and Xtion Pro are 

unable to compute depth within about 0.5 meters (2 feet) of the camera.  You will 

therefore need to place the arm so that the typical target location for the gripper is 

outside of this blind spot.  If the camera is mounted high up on the torso, then a good 

mount point for the arm might be a couple of feet below that.  If you can also include a 

telescoping joint for the torso or a movable arm like on Maxwell, then your arm will be 

that much more versatile when it comes to reaching objects on counter tops and tables 

at different heights. 

 4.8.2  Modeling the arm 

Creating a URDF/Xacro for an arm is similar to what we have already done for the 

panand-tilt head.  The only real difference is that we have more joints and the arm 

assembly is attached to a different location on the torso.  To see the result for a one-arm 

Box Robot, run the following launch file: 

$ roslaunch rbx2_description box_robot_with_arm.launch 

If RViz is not still running, bring it up now: 

$ rosrun rviz rviz -d `rospack find rbx2_description`/urdf.rviz 

If RViz is still running, toggle the Robot Display checkbox to refresh the model.  The 

joint state GUI should now appear as follows: 
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And the view in RViz should appear something like this: 
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Here we have positioned the joints of the arm as well as the gripper using the slider 

controls in the joint state GUI. 

To conserve space, we won't list out the entire URDF/Xacro files for the arm.  The joint 

definitions are nearly the same as with the pan-and-tilt head covered earlier.  The key 

files are as follows: 

• the launch file box_robot_with_arm.launch loads the Xacro file 

box_robot_with_arm.xacro from the urdf/box_robot subdirectory 

• the box_robot_with_arm.xacro file in turn includes Xacro files for the 

base, torso, pan-and-tilt head, arm, and gripper 

• the arm itself is defined in the file box_arm.urdf.xacro 

• the gripper is defined in the file box_gripper.urdf.xacro 

In the file  box_robot_with_arm.xacro we attach the arm to the torso and the 

gripper to the arm with the following two code blocks: 

   <!-- Attach the right arm --> 
   <arm side="right" reflect="-1" parent="torso" color="White"> 
     <origin xyz="${arm_offset_x} ${arm_offset_y} ${arm_offset_z}" rpy="0 0 $ 
{PI/2}" /> 
   </arm> 

     
   <!-- Attach the right gripper --> 
   <gripper side="right" reflect="-1" parent="right_arm_gripper_attach"  
color="Green"> 
     <origin xyz="0 0 0" rpy="0 0 0" />  
   </gripper> 

The key parameters to note here are the side and reflect parameters.  For the right 

arm, we set the side parameter to "right" and the reflect parameter to "-1".  These 

parameters are then passed to macros in the box_arm.urdf.xacro macro to give each 

joint a unique name (e.g. right_arm_shoulder_pan_joint versus 

left_arm_shoulder_pan_joint) and (optionally) reflect any displacements from 

right to left.  (As it turns out, our current models do not require the reflect parameter but 

is a good idea to know about it in case it is needed for a different model.)  As we shall 

see in the next section, adding a second arm can be done using the same  

box_arm.urdf.xacro file with parameters side="left" and reflect="1". 
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Don't forget to check the rotations of the arm joints using the method described section 

4.7.3.  If you find that a particular joint rotates in the wrong direction, simply change 

the sign of the axis component in the arm's URDF/Xacro file. 

 4.8.3  Adding a gripper frame for planning 

The arm model defined above includes a model for a simple gripper which in turn is 

defined in the file box_gripper.urdf.xacro.  This particular gripper has one fixed 

finger plate and one movable finger controlled by a single servo.  When it comes to 

grasping an object later in the book, we will want to know where within the gripper is 

the best place to actually do the grasping.  For this particular gripper, a good grasping 

point is located in between the two fingers at the midpoint of the two parallel sections of 

the finger plates as shown below: 

 

The red, green and blue axes are centered at the desired grasping point and are oriented 

with the red x-axis parallel to the fingers, the blue z-axis pointing upward from the 

plane of the gripper, and the green y-axis pointing to the gripper's left. 

This gripper frame is defined in the gripper URDF model 

(box_gripper.urdf.xacro) by the following block: 

    <!-- Planning link and joint for the right gripper --> 
    <joint name="${side}_gripper_joint" type="fixed"> 
      <origin xyz="0.05 0.0 -0.0375" rpy="${PI/2} 0 0"/> 
      <axis xyz="0 0 1" /> 
      <parent link="${side}_gripper_static_finger_link"/> 
      <child link="${side}_gripper_link"/> 
    </joint> 

     
    <link name="${side}_gripper_link"> 
      <visual> 
        <origin xyz="0 0 0" rpy="0 0 0"/> 
        <geometry> 
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           <box size="0.001 0.0005 0.0005"/> 
        </geometry> 
      </visual> 
    </link> 

The link itself is defined as a very small box called right_gripper_link and the 

location of this small box is defined by the right_gripper_joint which displaces 

and rotates the origin of the link relative to the parent  

(right_gripper_static_finger_link in this case).  The result is a gripper frame 

located and oriented in a good place for grasping.  We will use this gripper frame in the 

chapter on arm navigation when it comes to picking up objects. 

NOTE: Using a virtual gripper frame like this is optional and not a standard ROS 

practice.  It is more common to use the last wrist link attached to the gripper as the 

reference frame for planning.  That way one can swap out different grippers without 

having much of an effect on existing planning software.  However, adding a virtual 

planning frame can make it easier to visualize and describe grasping goals relative to 

the gripper. 

 4.8.4  Adding a second arm 

Adding a second arm is almost as easy as adding one arm.  The URDF/Xacro file for the 

arm (box_arm.urdf.xacro) uses the parameters side and reflect to determine 

which side and orientation to place the arm on the torso. 

The Xacro file box_robot_with_two_arms.xacro does the trick by including the 

following pair of macro blocks, one for the right arm and one for the left: 

   <!-- Attach the right arm --> 
   <arm side="right" reflect="-1" parent="torso" color="White"> 
     <origin xyz="${arm_offset_x} ${arm_offset_y} ${arm_offset_z}" rpy="0 0 $ 
{PI/2}" /> 
   </arm> 

     
   <!-- Attach the right gripper --> 
   <gripper side="right" reflect="-1" parent="right_arm_gripper_attach"  
color="Green"> 
     <origin xyz="0 0 0" rpy="0 0 0" />  
   </gripper> 

    
   <!-- Attach the left arm --> 
   <arm side="left" reflect="1" parent="torso" color="White"> 
     <origin xyz="${arm_offset_x} ${-arm_offset_y} ${arm_offset_z}" rpy="0 0 ${- 
PI/2}" /> 
   </arm> 
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   <!-- Attach the left gripper --> 
   <gripper side="left" reflect="1" parent="left_arm_gripper_attach"  
color="Green"> 
     <origin xyz="0 0 0" rpy="0 0 0" />  
   </gripper> 

Note how the two arms and grippers use the same macros <arm> and <gripper> but 

with opposite values for the parameters side and reflect.  The side parameter gives 

the links and joints of each arm different prefixes (e.g.  

right_arm_shoulder_lift_joint versus left_arm_shoulder_lift_joint) 

and the reflect parameter can be used to mirror displacements or rotation directions 

although this is not necessary in the case of the current arm models.  As for how each 

arm is mounted, note that the y-offset of the left arm is the opposite sign of the right 

arm and it is rotated around the z-axis in the by 90 degrees in the opposite direction. 

To view the two-armed Box Robot, run the launch file: 

$ roslaunch rbx2_description box_robot_with_two_arms.launch 

If RViz is not still running, bring it up now: 

$ rosrun rviz rviz -d `rospack find rbx2_description`/urdf.rviz 

After toggling the RobotModel display in RViz and adjusting the joint slider controls, 

the model should look something like the following:  
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 4.8.5  Using meshes for the arm servos and brackets 

Fortunately for us, a number of people have already made STL meshes for Dynamixel 

servos and brackets.  So we can add some detail to our robot arm by using meshes 

instead of boxes.  This has been done for the model of Pi Robot using the following 

files: 

• the launch file pi_robot_with_arm.launch loads the Xacro file 

pi_robot_with_arm.xacro from the urdf/pi_robot subdirectory 

• the pi_tobot_with_arm.xacro file in turn includes Xacro files for the base, 

torso, pan-and-tilt head, arm, and gripper 

• the arm itself is defined in the file pi_arm.urdf.xacro  

• the gripper is defined in the file pi_gripper.urdf.xacro 

 To see the resulting model, terminate any currently running URDF launch files and run: 

$ roslaunch rbx2_description pi_robot_with_arm.launch  
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If RViz is not still running, bring it up now: 

$ rosrun rviz rviz -d `rospack find rbx2_description`/urdf.rviz 

(If RViz is still running from a previous session, toggle the checkbox beside the 

RobotModel display to reload the model.)  The image should look like the following: 

 

And a close-up of the Dynamixel mesh components is shown below: 
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You can also view a two-armed version of Pi, using the launch file: $ roslaunch 

rbx2_description pi_robot_with_two_arms.launch 

Which should result in the following model in RViz: 
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 4.9  Adding a Telescoping Torso to the Box Robot 

A number of commercial robots such as the Willow Garage PR2 and the UBR1 from 

Unbounded Robotics use an adjustable height torso that can move vertically to raise or 

lower the robot.  This increases the reachability of the arm(s) and allows the head 

camera to be positioned over a greater range of heights.  Prior to becoming a co-founder 

and CTO of Unbounded Robotics, Michael Ferguson created the hobby level Maxwell 

with a customized linear actuator that allows the single arm to move vertically.  (The 

head and torso actually remain at a fixed height.) 

It is relatively straightforward to add a linear joint to the model of our robot's torso so 

that we can experiment with adjusting the robot's height on the fly.  To try it out with 

our box robot, run the launch file: 

$ roslaunch rbx2_description box_robot_tele_torso_with_arm.launch 

If RViz is not still running, bring it up now: 

$ rosrun rviz rviz -d `rospack find rbx2_description`/urdf.rviz 

(If RViz is still running from a previous session, toggle the checkbox beside the 

RobotModel display to reload the model.) 
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Note that the joint control panel now has a slider for the torso joint.  Moving this control 

will adjust the torso height up and down.  

The URDF that makes this happen can be found in the file tele_torso.urdf.xacro 

in the directory rbx2_description/urdf/box_robot.  The key element is the 

addition of a prismatic (linear) joint that splits the torso into upper and lower segments 

like this: 

    <joint name="${name}_joint" type="prismatic"> 
      <parent link="lower_${name}_link"/> 
      <child link="upper_${name}_link"/> 
      <axis xyz="0 0 1" /> 
      <origin xyz="0 0 0.1" rpy="0 0 0"/> 
      <limit lower="-0.15" upper="0.15" velocity="0.1" effort="1.0" /> 
    </joint> 

(ROS uses the keyword "prismatic" to indicate a linear joint.)  We define the axis to be 

in the positive z direction and we define the origin to have a 10 cm (0.1 meter) offset 

so that the starting position places the robot at a neutral height.  We then give the joint a 

15 cm range in both the up and down directions using the lower and upper 

parameters. 

 4.10  Adding a Telescoping Torso to Pi Robot 

We can use the same technique with Pi Robot using meshes for the torso rather than 

boxes  You can try it out using the launch file: 

$ roslaunch rbx2_description pi_robot_tele_torso_with_arm.launch 

The URDF model for the telescoping torso can be found in the file 

pi_tele_torso.urdf.xacro found in the directory 

rbx2_description/urdf/pi_robot.  The code is nearly identical to the box robot 

as described in the previous section. 

 4.11  A Tabletop One-Arm Pi Robot 

Sometimes it is nice to have a robot, or at least a model of a robot, that just sits on a 

tabletop and enables you to focus on the head and arm(s).  You can find a model of just 

such a robot in the rbx2_description/urdf/pedestal_pi directory.  There are 

two versions of the robot, one with a gripper (pedestal_pi_with_gripper.xacro) 

and one with a simple paddle-like hand with no moving fingers  
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(pedestal_pi_no_gripper.xacro).  To view the model without the gripper, run the 

command: 

$ roslaunch rbx2_description pedestal_pi_no_gripper.launch 

If RViz is not still running, bring it up now: 

$ rosrun rviz rviz -d `rospack find rbx2_description`/urdf.rviz 

(If RViz is still running from a previous session, toggle the checkbox beside the 

RobotModel display to reload the model.)   The image should look like this: 

 

To load the model with the gripper, terminate the earlier launch file and run the 

command: 

$ roslaunch rbx2_description pedestal_pi_with_gripper.launch 

If RViz is not still running, bring it up now: 

$ rosrun rviz rviz -d `rospack find rbx2_description`/urdf.rviz 
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(If RViz is still running from a previous session, toggle the checkbox beside the 

RobotModel display to reload the model.)  The image should look like this: 

 

It is instructive to note that the very same URDF/Xacro files for the arm and gripper are 

used with this "Pedestal Pi" model as with the mobile version of Pi Robot.  We are 

simply attaching the arm and gripper to different base models for the two robots. 

 4.12  Testing your Model with the ArbotiX Simulator 

In Volume 1 we used the arbotix_python package to provide a fake base controller 

that allowed us to control a simulated TurtleBot and view the results in RViz.  The 

complete arbotix package also includes controllers for Dynamixel servos, 

multijointed arms, and grippers with various geometries.  These controllers can also be 

run in fake mode which enables us to test a robot's arm(s) or pan-and-tilt head while 

monitoring the motions in RViz. 

The rbx2_bringup package includes a number of launch files for running either the 

Box Robot or Pi Robot using the arbotix controllers.  We will examine the launch 

files and configuration files in detail in the next chapter.  For now, let's simply try it out 

with our robot models. 
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If you haven't already installed the arbotix package, do it now with the following 

command:  

$ sudo apt-get install ros-indigo-arbotix 

 4.12.1  A fake Box Robot 

To launch the ArbotiX simulator using the one-arm Box Robot, use the launch file 

fake_box_robot_with_gripper.launch in the rbx2_bringup/launch: 

$ roslaunch rbx2_bringup fake_box_robot_with_gripper.launch 

The output on the screen should look like something like this: 

process[arbotix-1]: started with pid [28030]  
process[right_gripper_controller-2]: started with pid [28042] 
process[robot_state_publisher-3]: started with pid [28044]  
[INFO] [WallTime: 1379768229.756858] ArbotiX being simulated.  
[INFO] [WallTime: 1379768230.099804] Started FollowController  
(right_arm_controller). Joints: ['right_arm_shoulder_pan_joint',  
'right_arm_shoulder_lift_joint', 'right_arm_shoulder_roll_joint',  
'right_arm_elbow_flex_joint', 'right_arm_forearm_flex_joint',  
'right_arm_wrist_flex_joint'] on C1  
[INFO] [WallTime: 1379768230.117023] Started FollowController  
(right_gripper_controller). Joints: ['right_gripper_finger_joint'] on C2  
[INFO] [WallTime: 1379768230.150616] Started DiffController 
(base_controller). Geometry: 0.26m wide, 4100.0 ticks/m. 

Here we see that we have started three nodes: the main arbotix driver, a driver for the 

right gripper, and the robot_state_publisher.  We also see INFO lines for the two 

joint trajectory controllers (called FollowControllers in the arbotix package) one 

for the right arm and one for the gripper) and the DiffController for the differential 

drive base.  We will postpone discussion of these nodes and controllers until the chapter 

on MoveIt! and Arm Navigation.  For now, let us simply verify that we can move the 

joints in an appropriate manner. 

If RViz is still running from a previous session, terminate it now and bring it up with 

the sim.rviz config file as follows: 

$ rosrun rviz rviz -d `rospack find rbx2_bringup`/sim.rviz 
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Note that under the Global Options category, we have set the Fixed Frame to /odom.  

Recall from Volume 1 that we need to be in the /odom frame in order to see the robot 

move when publishing Twist commands on the /cmd_vel topic. 

Now open up a new terminal and bring up up the ArbotiX GUI utility: 

 

A new window should pop up that looks like this: 

 

Use the simulated track pad on the left to drive the robot around in RViz by grabbing 

the little red dot and dragging it around.  (If the robot does not appear to move, 

doublecheck that you have set the Fixed Frame to /odom under the Global Options 

category in RViz.)  To move a joint, click the checkbox beside a servo name then use 

the slide control to rotate it. 

The arbotix_gui is a nice way to test the basic functionality of your robot.  Moving 

the red dot on the track pad publishes Twist messages on the /cmd_vel topic.  If the 

base controller parameters are set properly, the fake robot should move in the expected 

manner. 

Similarly, the servo slider controls can be used to test the motion of individual joints.  

These controls publish a Float64 message representing the joint position in radians on 

the topic /joint_name/command.  For example, the slider labeled 

right_arm_shoulder_lift publishes its position value on  

the /right_arm_shoulder_lift_joint/command topic.  If you move the slider, 

the arm should move up or down at the shoulder joint. 

$ arbotix_gui 
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Single the arbotix nodes are true controllers, unlike the joint state publisher that we 

have been using in this chapter up until now, we can publish commands on the relevant 

control topics to move the joints.  In Volume 1 we already saw how to move the fake 

robot's base by publishing Twist commands on the /cmd_vel topic.  Now we can also 

move the joints in a similar fashion. 

Terminate the arbotix_gui if you still have it running, then try the following 

commands to move the head and arm. 

For example to pan the head 90 degrees (1.57 radians) to the left, run the command: 

$ rostopic pub -1 /head_pan_joint/command std_msgs/Float64 -- 1.57 

To move the arm to a horizontal position using the 

right_arm_shoulder_lift_joint, try the command: 

$ rostopic pub -1 /right_arm_shoulder_lift_joint/command 
std_msgs/Float64 -- -1.57 

And to move it back to its resting position:  

$ rostopic pub -1 /right_arm_shoulder_lift_joint/command 
std_msgs/Float64 -- 0.0 

In later chapters, we will learn how to control the joints programmatically from within 

our own nodes. 

 4.12.2  A fake Pi Robot 

To test the one-arm Pi Robot mesh model, terminate the launch file for the fake Box 

Robot if it is still running,  run the pi_robot_with_gripper.launch file with the 

sim argument set to true: 

 

If RViz is not still running, bring it up now with the sim.rviz config file: 

$ rosrun rviz rviz -d `rospack find rbx2_bringup`/sim.rviz 

If RViz was already running, toggle the checkbox beside the RobotModel display to 

make sure the display is updated with the model of Pi Robot. 

If the ArbotiX GUI is not still running, bring it up now: 

$ 
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Now you can drive Pi Robot's base and control his servos as we did with the Box Robot. 

 4.13  Creating your own Robot Description Package 

You now have all the tools you need to model a robot with almost any configuration.  

But before you start working on the design of your own robot, it is usually a good idea 

to create a package to hold all of the files.  Traditionally in ROS, the package holding 

the model for a robot named mybot would be called mybot_description.  The steps 

for creating the package depend on whether you are using the older rosbuild system 

or the newer catkin system. 

 4.13.1  Using rosbuild 

If you are using the older rosbuild system you would start with the following: 

$cd ~/ros_workspace 

$ roscreate-pkg mybot_description roscpp rospy urdf 

Then create a few standard subdirectories: 

 

You should also edit the manifest.xml file to include your name and email address as 

the author of the package.  You can edit the description field as you like. Then, although 

not strictly necessary, run rosmake to make sure nothing surprising happens: 

 

And to ensure your new package is added to your ROS_PACKAGE_PATH for the current 

terminal session, run: 

 

 4.13.2  Using catkin 

To create your robot description package using catkin, follow these steps.  (If you 

haven't already set up your catkin workspace, see Volume 1 Chapter 4 for instructions or 

refer to the online tutorial on the ROS Wiki.) 

$ arbotix_gui 

$ cd  mybot _description 
$ mkdir urdf 
$ mkdir meshes 
$ mkdir launch 

$ rosmake 

$ rospack profile 
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$ cd ~/catkin_ws/src 
$ catkin_create_pkg mybot_description roscpp rospy urdf 

Then create a few standard subdirectories: 

 

You will now need to edit the package.xml file to include your name and email 

address as the package maintainer as well as the license type.  You can edit the 

description field as you like. 

To make sure everything is OK, run catkin_make: 

 

And to ensure your new package is added to your ROS_PACKAGE_PATH for the current 

terminal session, run: 

 

 4.13.3  Copying files from the rbx2_description package 

If you want to start with some of the URDF/Xacro files from the rbx2_description 

package and then make modifications, copy them into your own package directory 

under the appropriate sub-directory.  Note however that the Xacro files in the 

rbx2_description package refer to other files in that same package.  So you will 

have to edit the package name and probably the path and file name to match your own 

filenames.  For example, the following <xacro:include> line is used in the file 

pi_robot_with_arm.xacro in the rbx2_description/urdf/pi_robot 

directory: 

<xacro:include filename="$(find 
rbx2_description)/urdf/pi_robot/pi_base.urdf.xacro" /> 

This line pulls in Pi's base model from the file pi_base.urdf.xacro found in the 

same package directory.  Simply edit this line in your copy of the file to match your 

package name and the location of your robot's base file. 

$ cd mybot_description 
$ mkdir urdf 
$ mkdir meshes 
$ mkdir launch 

$ cd ~/catkin_ws 
$ catkin_make 

$ rospack profile 
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 4.13.4  Creating a test launch file 

To test your URDF/Xacro model, copy and paste the following lines into a launch file 

called test_urdf.launch (or whatever you like) and place it in the launch 

subdirectory of your package directory: 

<launch> 
    <!-- Load the URDF/Xacro model of your robot --> 
    <arg name="urdf_file" default="$(find xacro)/xacro.py '$(find 
mybot_description)/urdf/mybot.xacro'" /> 

    <param name="robot_description" command="$(arg urdf_file)" /> 

     
    <!-- Publish the robot state --> 

<node name="robot_state_publisher" pkg="robot_state_publisher" 
type="state_publisher"> 
     <param name="publish_frequency" value="20.0"/> 
    </node> 

<!-- Provide simulated control of the robot joint angles -->     <node 
name="joint_state_publisher" pkg="joint_state_publisher"  
type="joint_state_publisher"> 
     <param name="use_gui" value="True" /> 
     <param name="rate" value="20.0"/> 
    </node> 
</launch> 

Be sure to change the name of the package and the .xacro file highlighted above in 

bold to match your package name and robot model file. 

You can then launch this file any time you want to test your model: 

$ roslaunch mybot_description test_urdf.launch 

To view the model in RViz, use the config file in the rbx2_description package as 

we have done in the rest of this chapter: 

$ rosrun rviz rviz -d `rospack find rbx2_description`/urdf.rviz 

Alternatively, copy the config file into your new package directory: 

$ roscd mybot_description 
$ roscp rbx2_description urdf.rviz . 

You can then run RViz with your own config file and any changes you make to the 

settings will be saved to your copy: 
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$ rosrun rviz rviz -d `rospack find mybot_description`/urdf.rviz 
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5. CONTROLLING DYNAMIXEL SERVOS: TAKE 2 

Readers of Volume 1 will recall that we used the dynamixel_motor package to control 

a Dynamixel pan-and-tilt head.  At that time, we had a choice between using the 

dynamixel_motor package or the arbotix package, and we still do.  Both packages 

provide robust drivers for Dynamixel servos and the primary reason we chose the 

dynamixel_motor package in Volume 1 was that we needed servo speed control for 

head tracking that was missing in the arbotix package at the time.  Since then, 

Michael Ferguson has added the speed control function to the arbotix package.  

Furthermore, when it comes to arm navigation, the arbotix package offers us a number 

of additional advantages: 

• The arbotix package includes gripper controllers that are not available in the 

dynamixel_motor package. 

• The arbotix package provides a fake mode that uses essentially the same 

configuration file used with real servos.  This allows us to test the operation of 

our scripts and nodes using RViz as a kind of fake simulator before trying them 

out on a real robot. 

• The arbotix package can be used with either the ArbotiX controller or the 

USB2Dynamixel controller while the dynamixel_motor package only runs 

with the USB2Dynamixel device. 

• As we know from Volume 1, the arbotix package also includes a base 

controller for a differential drive robot. 

• The arbotix package is currently more actively developed than the 

dynamixel_motor package. 

 5.1  Installing the ArbotiX Packages 

To install the arbotix packages, run the command:  

$ sudo apt-get install ros-indigo-arbotix 

That's all there is to it. 

 5.2  Launching the ArbotiX Nodes 

At the end of the chapter on URDF models, we briefly explained how we can use the 

arbotix package in fake mode to test the function of our robot's joints.  In this chapter 
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we will learn how to set up the ArbotiX configuration file and create a launch file that 

will bring up the controllers for the arm and head joints as well as the gripper.  We can 

then use these controllers later in the book for head tracking and arm navigation, both in 

simulation and with real Dynamixel servos. 

The rbx2_bringup package includes launch files for different versions of Pi Robot.  

The launch file for the one-arm version of Pi Robot is called  

pi_robot_with_gripper.launch.  This file brings up the arbotix base controller, 

individual controllers for each joint (servo), trajectory controllers for groups of joints 

such as the arm, and a controller for Pi's single-servo style gripper. 

Link to source:  pi_robot_with_gripper.launch 

1 <launch> 
2 <!-- Make sure we are not using simulated time --> 
3 <param name="/use_sim_time" value="false" /> 
4    
5   <!-- Launch the arbotix driver in fake mode by default --> 6   

<arg name="sim" default="true" /> 
7    
8   <!-- If a real controller, look on /dev/ttyUSB0 by default --> 9   

<arg name="port" default="/dev/ttyUSB0" /> 
10         
11 <!-- Load the URDF/Xacro model of our robot --> 
12 <param name="robot_description" command="$(find xacro)/xacro.py '$(find 

rbx2_description)/urdf/pi_robot/pi_robot_with_gripper.xacro'" /> 13     
14 <node name="arbotix" pkg="arbotix_python" type="arbotix_driver" 
clear_params="true" output="screen"> 
15 <rosparam file="$(find  
rbx2_dynamixels)/config/arbotix/pi_robot_with_gripper.yaml" command="load" /> 
16 <param name="port" value="$(arg port)" /> 
17 <param name="sim" value="$(arg sim)" /> 
18 </node> 
19    
20 <!-- Run a separate controller for the one sided gripper --> 
21 <node name="right_gripper_controller" pkg="arbotix_controllers" 
type="gripper_controller" output="screen"> 
22 <rosparam> 
23 model: singlesided 
24 invert: true 
25 center: 0.0 
26 pad_width: 0.01 
27 finger_length: 0.1653 
28 joint: right_gripper_finger_joint 
29 </rosparam> 
30 </node> 
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31 
32 <!-- Publish the robot state --> 
33 <node name="robot_state_publisher" pkg="robot_state_publisher" 
type="state_publisher"> 
34 <param name="publish_frequency" type="double" value="20.0" />35   </node> 
36    
37 <!-- Start all servos in a relaxed state --> 
38 <node pkg="rbx2_dynamixels" type="arbotix_relax_all_servos.py" 
name="relax_all_servos" unless="$(arg sim)" /> 
39    
40 <!-- Load diagnostics --> 
41 <node pkg="diagnostic_aggregator" type="aggregator_node" 
name="diagnostic_aggregator" clear_params="true" unless="$(arg sim)"> 
42 <rosparam command="load" file="$(find 

rbx2_dynamixels)/config/dynamixel_diagnostics.yaml" /> 43   </node> 
44 
45   <node pkg="rqt_robot_monitor" type="rqt_robot_monitor" 

name="rqt_robot_monitor" unless="$(arg sim)" /> 46 
47 </launch> 

Let's break this down line by line. 

3 <param name="/use_sim_time" value="false" /> 

ROS uses the use_sim_time parameter when running bag files or the Gazebo 

simulator.  It is therefore a good idea to explicitly set this parameter to false at the top 

of a launch file designed for a real controller in case you have inadvertently left it set to 

true from an earlier session. 

6    <arg name="sim" default="true" /> 

The arbotix driver uses a parameter called sim to determine whether it runs in fake 

mode or  controls real servos.  Here we define an argument by the same name so that we 

can pass a value of true or false for the parameter when we run the launch file.  This 

allows us to use the same launch file for running the fake robot or the real robot.  We 

also set a default value of true so that if we run the launch file without an argument, it 

will run in fake mode.  So to run the one-arm version Pi Robot in fake mode, we would 

run the launch file like this: 

$ roslaunch rbx2_bringup pi_robot_with_gripper.launch sim:=true 

To connect to the real Pi Robot, we would run the launch file with the sim argument set 

to false like this: 

$ roslaunch rbx2_bringup pi_robot_with_gripper.launch sim:=false 

Let's now continue with the launch file: 
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9    <arg name="port" default="/dev/ttyUSB0" /> 

Here we define an argument for the serial port that will be used if we are connecting to a 

real controller.  We also set the default to the most likely USB port so that if your 

controller is on /dev/ttyUSB0, you do not have to supply the port argument when 

running the launch file.  So if Pi Robot is using a USB2Dynamixel on port  

/dev/ttyUSB0, and we want control real servos rather than running in fake mode, we 

would run the launch file like this: 

$ roslaunch rbx2_bringup pi_robot_with_gripper.launch sim:=false 

where we are using the default port of /dev/ttyUSB0.  If the controller is on 

/dev/ttyUSB1, then we supply the port value explicitly: 

$ roslaunch rbx2_bringup pi_robot_with_gripper.launch sim:=false 
port:=/dev/ttyUSB1 

If your controller is always on USB1, you could modify the launch file or make a copy 

of the original and substitute /dev/ttyUSB1 for the default.  See also the Appendix on 

configuring plug and play devices under Ubuntu so that your controller is always 

assigned the same device name. 

12   <param name="robot_description" command="$(find xacro)/xacro.py '$(find 
rbx2_description)/urdf/pi_robot/pi_robot_with_gripper.xacro'" /> 

By now you should be familiar with this line that loads the URDF model we want to use.  

In this case, we are loading the model for the one-arm version of Pi Robot including a 

gripper as defined by the URDF/Xacro file  pi_robot_with_gripper.xacro in the 

rbx2_description package under the subdirectory urdf/pi_robot. 

14 <node name="arbotix" pkg="arbotix_python" type="arbotix_driver" 
clear_params="true" output="screen"> 
15 <rosparam file="$(find  
rbx2_dynamixels)/config/arbotix/pi_robot_with_gripper.yaml" command="load" /> 
16 <param name="sim" value="$(arg sim)" /> 
17 <param name="port" value="$(arg port)" />18   </node> 

Lines 14-18 bring up the main arbotix_driver node located in the 

arbotix_python package.  The clear_params="true" argument in Line 14 deletes 

any left over parameters in the /arbotix namespace that might be set by an earlier 

session.  Line 15 loads the arbotix configuration file for the robot we are using.  In this 

case, the configuration is loaded from the file pi_robot_with_gripper.yaml found 

in the rbx2_dynamixels package under the config/arbotix subdirectory.   We will 
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examine this file in detail in the next section.  Lines 16 and 17 set the sim and port 

parameters from the arguments defined earlier in the launch file. 

21 <node name="right_gripper_controller" pkg="arbotix_controllers" 
type="gripper_controller" output="screen"> 

22 <rosparam> 
23 model: singlesided 
24 invert: true 
25 center: 0.0 
26 pad_width: 0.004 
27 finger_length: 0.065 
28 joint: right_gripper_finger_joint 
29 </rosparam> 
30 </node> 

Here we launch the arbotix gripper controller for Pi's one-sided gripper.  The 

arbotix_controllers package includes the gripper_controller node that can 

control a number of different gripper types including the one-sided single-servo model 

like Pi's, dual servo models like those used on Maxwell, or single-servo parallel grippers 

like the PhantomX gripper from Trossen Robotics.  For Pi's gripper, we set the model 

parameter to singlesided as well as the pad_width and finger_length given in 

meters.  The single joint name must match Pi's gripper URDF model and is set to 

right_gripper_finger_joint since that joint corresponds to the servo that rotates 

the movable finger plate. 

33 <node name="robot_state_publisher" pkg="robot_state_publisher" 
type="state_publisher"> 
34 <param name="publish_frequency" type="double" value="20.0" />35   
</node> 

Next we run the robot_state_publisher node that takes care of mapping the robot's 

URDF model and joint states into the corresponding tf tree. 

38   <node pkg="rbx2_dynamixels" type="arbotix_relax_all_servos.py" 
name="relax_all_servos" unless="$(arg sim)" /> 

When using real servos, it is a good idea to initialize each servo in a relaxed state so that 

the arm or head can be positioned by hand if necessary.  The script called 

arbotix_relax_all_servos.py does the job by turning off the torque for each 

joint.  It also sets the initial movement speed to a moderate value so that sending a 

position command to a servo won't result in a surprisingly fast motion.  The  

arbotix_relax_all_servos.py script can be found in the 

rbx2_dynamixels/script directory and will be examined more closely later in the 

chapter. 
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Note how we make use of the unless keyword inside the <node> tag in Line 38.  This 

tells roslaunch not to run this node if the sim parameter is true; i.e. if we are running 

in fake mode.  (There is no need to relax a fake servo!)   

41 <node pkg="diagnostic_aggregator" 
type="aggregator_node" name="diagnostic_aggregator" 
clear_params="true" unless="$(arg sim)"> 
42 <rosparam command="load" file="$(find 

rbx2_dynamixels)/config/dynamixel_diagnostics.yaml" /> 

43   </node> 

The arbotix node publishes servo diagnostics automatically so here we fire up the 

diagnostic_aggregator that will enable us to keep an eye on servo loads and 

temperatures.  Our diagnostics configuration is stored in the  

dynamixel_diagnostics.yaml file located in the rbx2_dynamixels/config  

directory.  (ROS diagnostics is explored fully in the next chapter.)  This configuration 

file instructs the aggregator to summarize diagnostic information for joints and 

controllers.  Note that we again use the unless keyword inside the <node> tag so we 

don't run the node in fake mode. 

45   <node pkg="rqt_robot_monitor" type="rqt_robot_monitor" 
name="rqt_robot_monitor" unless="$(arg sim)" /> 

Finally, we run the rqt_robot_monitor (unless sim=true) which brings up the 

diagnostic GUI allowing us to visually monitor the status of the servos.  More on 

rqt_robot_monitor in the next chapter on ROS diagnostics. 

 5.3  The ArbotiX Configuration File 

The launch file above loads the configuration file pi_robot_with_gripper.yaml 

located in the directory rbx2_dynamixels/config/arbotix.  Let's take a look at 

that file now.  (Clicking the link below will bring up a nicely formated view of the file 

that might be easier to read than the listing included here.) 

Link to source:  pi_robot_with_gripper.yaml 
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1 port: /dev/ttyUSB0 
2 baud: 1000000 
3 rate: 100 
4 sync_write: True 
5 sync_read: False 
6 read_rate: 10 
7 write_rate: 10 
8 
9 joints: { 
10 head_pan_joint: {id: 1, neutral: 512, min_angle: -145, max_angle: 145}, 
11 head_tilt_joint: {id: 2, neutral: 512, min_angle: -90, max_angle: 90}, 
12 right_arm_shoulder_roll_joint: {id: 3, neutral: 512, invert: True}, 
13 right_arm_elbow_flex_joint: {id: 4, neutral: 512, min_angle: -90, max_angle: 
90}, 
14 right_arm_forearm_flex_joint: {id: 5, neutral: 512, min_angle: -90, 
max_angle: 90}, 
15 right_arm_wrist_flex_joint: {id: 6, neutral: 512, min_angle: -90, max_angle: 
90}, 
16 right_arm_shoulder_pan_joint: {id: 7, ticks: 4096, neutral: 2048, min_angle: 
-100, max_angle: 100}, 
17 right_arm_shoulder_lift_joint: {id: 8, ticks: 4096, neutral: 1024, invert: 
True}, 
18 right_gripper_finger_joint: {id: 9, neutral: 512, min_angle: -20, max_angle: 
25} 
19 } 
20 
21 controllers: { 
22 base_controller: {type: diff_controller, base_frame_id: base_footprint, 
base_width: 0.26, ticks_meter: 4100, Kp: 12, Kd: 12, Ki: 0, Ko: 50, accel_limit: 
1.0 }, 
23 right_arm_controller: {onboard: False, action_name: follow_joint_trajectory, 
type: follow_controller, joints:  
[right_arm_shoulder_pan_joint, right_arm_shoulder_lift_joint, 
right_arm_shoulder_roll_joint, right_arm_elbow_flex_joint, 
right_arm_forearm_flex_joint, right_arm_wrist_flex_joint]}, 
24 head_controller: {onboard: False, action_name: 
head_controller/follow_joint_trajectory, type: follow_controller, joints:  
[head_pan_joint, head_tilt_joint]} 

25 } 

The official description of all available arbotix parameters can be found on the 

arbotix_python  Wiki page.  So let's focus on the parameter values that we have set in 

our current configuration file. 
1 port: /dev/ttyUSB0 
2 baud: 1000000 
3 rate: 100 
4 sync_write: True 
5 sync_read: False 
6 read_rate: 10 
7 write_rate: 10 
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The port and baud parameters are only relevant if using a real controller and servos 

will be ignored in fake mode .  Here is a brief description of the parameters listed in 

Lines 1-7: 

• port (default: /dev/ttyUSB0) – refers to the serial port on which the 

controller is connected and it is likely to be /dev/ttyUSB0, /dev/ttyUSB1, 

etc.  Recall that we can override the port setting on the command line when 

running our launch file. 

• baud (default: 115200) – the baud rate of the serial port connected to the 

controller.  If you are using a USB2Dynamixel controller, this parameter has to 

be set to 1000000.  If you are using an ArbotiX controller, the default baud rate 

is 115200. 

• rate (default: 100) – how fast (in Hz) to run the main driver loop.  The default 

value of 100 works well, especially when it comes to generating joint 

trajectories as we will do later on.   The reason is that the arbotix controllers 

interpolate joint positions when moving the servos and a high rate here results in 

a finer degree of interpolation and therefore smoother servo motion. 

• sync_write (default: True) – if set to True, enables the controller to send 

data to all servos simultaneously which is usually desirable and is in fact the 

default value for this parameter. 

• sync_read (default: True) – if you are using a USB2Dynamixel controller, the 

parameter must be set to False.  The default value of True will only work with 

the ArbotiX controller. 

• read_rate (default: 10) – how frequently (Hz) data is read from the 

Dynamixels.   

• write_rate (default: 10) – how frequently (Hz) data is written to the 

Dynamixels. 

9 joints: { 
10 head_pan_joint: {id: 1, neutral: 512, min_angle: -145, max_angle: 145}, 
11 head_tilt_joint: {id: 2, neutral: 512, min_angle: -90, max_angle: 90}, 
12 right_arm_shoulder_roll_joint: {id: 3, neutral: 512, invert: True}, 
13 right_arm_elbow_flex_joint: {id: 4, neutral: 512, min_angle: -90, 

max_angle: 90}, 
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14 right_arm_forearm_flex_joint: {id: 5, neutral: 512, min_angle: -90, 
max_angle: 90}, 

15 right_arm_wrist_flex_joint: {id: 6, neutral: 512, min_angle: -90, 
max_angle: 90}, 

16 right_arm_shoulder_pan_joint: {id: 7, ticks: 4096, neutral: 2048, 
min_angle: -100, max_angle: 100}, 

17 right_arm_shoulder_lift_joint: {id: 8, ticks: 4096, neutral: 1024, invert:  
True}, 
18 right_gripper_finger_joint: {id: 9, neutral: 512, min_angle: -20, 

max_angle: 25} 
19 } 

In Lines 9-19 we set the parameters for our servos by using the joints parameter 

which is a dictionary of joint names together with a separate parameter dictionary for 

each servo.  (More on these parameters below.)  Note that the joint names must be the 

same here as they are in the URDF model for your robot.  You can use the above 

configuration file as a template for your own robot, but be sure to edit the names to 

match your robot's URDF/Xacro model. 

IMPORTANT NOTE:  The AX and RX series of Dynamixel servos have an 8-bit 

angular resolution so that position values range from 0-1023 with a mid-point setting of 

512.  They also have a range of 300 degrees.  The EX and MX series have a 12-bit 

angular resolution so that position values range from 0-4095 with a mid-point value of 

2048.  These servos have a range of a full 360 degrees.  Pi Robot uses a pair of 

MX28T servos for his shoulder pan and lift joints and AX-12 servos everywhere else.  

You will therefore see that the ticks and neutral parameters for these two joints 

above refer to the 12-bit range of the MX servos.  More details are given below in the 

parameter summary. 

Each joint or servo has its own set of parameters as follows: 

• id – the Dynamixel hardware ID for this servo 

• ticks (default: 1024) – the range of position values for this servo.  The default 

value is valid for AX and RX series Dynamixels.  For EX and MX models, a 

value of 4096 must be used in the configuration file. 

• neutral (default: 512) – the neutral position value is mapped by the arbotix 

driver into 0 radians when publishing joint states.  The default value of 512 is 

usually appropriate for AX and RX model servos.  However, for EX and MX 

servos, a mid-point of 2048 must be explicitly specified in the configuration 

file.  Depending on how a particular servo connects to the rest of the robot, you 

will sometimes set a neutral value other than the mid-point of its range.  For 
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example, for Pi Robot's shoulder lift joint (which uses and MX-28T servo), the 

neutral parameter is set to 1024 which represents ¼ of a turn.  This was done so  

that a value of 0 radians corresponds to the arm hanging straight down instead 

of straight out. 

• range (default: 300) – the working angular range of the servo.  The default 

value of 300 applies to AX and RX servos but a value of 360 must be explicitly 

specified in the configuration file for EX and MX models. 

• max_speed (default: 684) – the maximum speed of the servo in degrees per 

second.  The default value is suitable for an AX-12 servo.  For an MX-28 servo, 

use 702. 

• min_angle (default: -150) – the minimum angle (in degrees) that the 

controller will turn the servo.  The default value of -150 is half the full range of 

an AX or RX servo.  For EX or MX servos, that value can be as high as -180.  

Note that you can set smaller values if the rotation of the servo is restricted by 

the way it is mounted.  For example, Pi Robot's elbow joint can rotate only 90 

degrees in either direction before its bracket runs into the upper arm.  We 

therefore specify min and max angles parameters of -90 and 90 in the 

configuration file shown above. 

• max_angle (default: 150) – The maximum angle (in degrees) that the 

controller will turn the servo.  The default value of 150 is half the full range of 

an AX or RX servo.  For EX or MX servos, that value can be as high as 180.  

Note that you can set smaller values if the rotation of the servo is restricted by 

the way it is mounted.  For example, Pi Robot's elbow joint can rotate only 90 

degrees in either direction before its bracket runs into the upper arm.  We 

therefore specify min and max angles parameters of -90 and 90 in the 

configuration file shown above. 

• invert (default: False) – some servos will be mounted so that an increasing 

value of the rotation angle will result in a negative rotation in the ROS-sense;  

i.e. when using the right-hand rule as we did in the chapter on URDF models.  If 

you find that a particular servo rotates a joint in a direction opposite to the 

direction you specified in your URDF model, then set the invert parameter to 

True in the arbotix config file.  Note that we have done this in the configuration 

file shown above for both the right_arm_shoulder_roll joint and the 

right_arm_shoulder_lift joint. 



 

 Controlling Dynamixel Servos: Take 2 - 167 

For each joint listed in the configuration file, the arbotix driver launches a joint 

controller and several ROS services similar to those we used in Volume 1 with the 

dynamixel_motor package.  For example, to control the position (in radians) of the 

right_arm_elbow_flex_joint, we can publish a Float64 message on the 

/right_arm_elbow_flex_joint/command topic.  To set the speed of the head pan 

servo, we can use the /head_pan_joint/set_speed service.  We will say more 

about these controllers and services in the next section on testing the servos. 

Now back to the configuration file. 

21 controllers: { 
22 base_controller: {type: diff_controller, base_frame_id: base_footprint, 
base_width: 0.26, ticks_meter: 4100, Kp: 12, Kd: 12, Ki: 0, Ko: 50, accel_limit: 
1.0 }, 
23 right_arm_controller: {onboard: False, action_name: follow_joint_trajectory, 
type: follow_controller, joints:  
[right_arm_shoulder_pan_joint, right_arm_shoulder_lift_joint, 
right_arm_shoulder_roll_joint, right_arm_elbow_flex_joint, 
right_arm_forearm_flex_joint, right_arm_wrist_flex_joint]} 
24 head_controller: {onboard: False, action_name: 
head_controller/follow_joint_trajectory, type: follow_controller, joints:  
[head_pan_joint, head_tilt_joint]} 

25 } 

Here we see controllers section of the configuration file.  In the case of Pi Robot, we 

are configuring three controllers: the base controller for a differential drive base, a 

trajectory action controller for the right arm joints, and a second trajectory action 

controller for the head joints.  Let's look at each of these in turn. 

For a real robot, the base controller settings appearing in Line 22 above are only 

relevant if you are using an actual ArbotiX controller to control a motor driver and a 

differential drive base. However, we also use the base controller in fake mode when we 

want to test a mobile robot in the ArbotiX simulator as we did in Volume 1 when 

learning about ROS navigation.  The official reference for the base parameters can be 

found on the ArbotiX diff_controller Wiki page.  When using a fake robot, the most 

important parameter here is the base_frame_id which we have set to 

base_footprint.  If your robot does not use a base_footprint frame, change the 

value here accordingly; e.g. base_link. 

  

Next we turn to the joint trajectory controllers for the arm and head. The use of ROS 

joint trajectories to control multiple joints simultaneously will be covered in detail in the 

chapter on Arm Navigation.  For now we will simply describe the various parameters 

used in the configuration file.  Let's start with the arm controller. 
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In Line 23 above, we have named the arm controller right_arm_controller and it is 

is defined by a dictionary of parameters as shown above.  Let's describe each of these in 

turn: 

• onboard (default: True) – if you are using a USB2Dynamixel controller, this 

parameter must be set to False.  The default value of True works only with the 

ArbotiX controller that includes code to do trajectory interpolation in firmware. 

• action_name (default: follow_joint_trajectory)  – this parameter 

defines the namespace for the joint trajectory action controller.  In the 

configuration file above we prepend the controller name to the action name so 

that the full namespace becomes  

right_arm_controller/follow_joint_trajectory.  This enables us to 

add a left arm at a later time whose controller would then operate in the 

left_arm_controller/follow_joint_trajectory namespace.  If this 

controller is going to be used with MoveIt (as we will in the next severak 

sections), the action_name must match the action_ns parameter set in the 

controllers.yaml file in the corresponding MoveIt configuration. 

• type – the arbotix node includes two types of controllers:  a 

diff_controller for controlling a base as we used in Volume 1, and a 

follow_controller for managing joint trajectories.  Of course, our robot's 

right arm controller must be of type follow_controller. 

• joints – the final parameter is the list of joints to be managed by this 

controller.  In the configuration file above, we list the joints of the right arm in 

the same order in which they appear in the kinematic tree.  Note that we do not 

include the gripper joint since the gripper is managed by its own controller. 

The Arbotix follow_controller implements a ROS joint trajectory action server and 

responds to action goals using the FollowJointTrajectoryGoal message type that 

we will discuss fully in the chapter on Arm Navigation.  The controller defined in the 

configuration file above listens on the topic  

/right_arm_controller/follow_joint_trajectory/goal for trajectory goals. 

In Line 24 above we define a second trajectory action controller, this time for the 

panand-tilt servos of the head.  Although we won't use the head controller much in this 

volume, it can be used to send motion goals to both head joints simultaneously. 
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 5.4  Testing the ArbotiX Joint Controllers in Fake Mode 

Before trying the arbotix controllers with real servos, let's run a few tests in the 

ArbotiX simulator.  First bring up the fake version of  Pi Robot as we have done before: 

$ roslaunch rbx2_bringup pi_robot_with_gripper.launch sim:=true 

You should see the following output on the screen: 

  
process[arbotix-1]: started with pid [11850]  
process[right_gripper_controller-2]: started with pid [11853] 
process[robot_state_publisher-3]: started with pid [11859]  
[INFO] [WallTime: 1401976945.363225] ArbotiX being simulated.  
[INFO] [WallTime: 1401976945.749586] Started FollowController  
(right_arm_controller). Joints: ['right_arm_shoulder_pan_joint',  
'right_arm_shoulder_lift_joint', 'right_arm_shoulder_roll_joint',  
'right_arm_elbow_flex_joint', 'right_arm_forearm_flex_joint',  
'right_arm_wrist_flex_joint'] on C1  
[INFO] [WallTime: 1401976945.761165] Started FollowController  
(head_controller). Joints: ['head_pan_joint', 'head_tilt_joint'] on C2  

The key items to note are highlighted in bold above: the right gripper controller is 

started; the ArbotiX controller is running in simulation mode; and the trajectory 

controllers for the right arm and head have been launched. 

Now bring up RViz with the urdf.rviz config file from the rbx2_description 

package: 

$ rosrun rviz rviz -d `rospack find rbx2_description`/urdf.rviz 

Next, bring up a new terminal and let's try publishing a few simple joint position 

commands.  We first learned about these commands in Volume 1 in the chapter on 

controlling Dynamixel servos with ROS.  We also ran some similar tests near the end of 

the chapter on URDF models. 

The first command should pan the head to the left (counter-clockwise) through 1.0 

radians or about 57 degrees: 

$ rostopic pub -1 /head_pan_joint/command std_msgs/Float64 -- 1.0 Re-

center the servo with the command: 

$ rostopic pub -1 /head_pan_joint/command std_msgs/Float64 -- 0.0  
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Now try raising the arm 2.0 radians (about 114 degrees) using the 

right_arm_shoulder_lift_joint: 

$ rostopic pub -1 /right_arm_shoulder_lift_joint/command 
std_msgs/Float64 -- -2.0  

Then lower it back down: 

$ rostopic pub -1 /right_arm_shoulder_lift_joint/command 
std_msgs/Float64 -- 0.0  

To disable a servo so that it no longer responds to position commands, use the enable 

service with the argument false: 

$ rosservice call /head_pan_joint/enable false 

Next, try sending the servo a new position: 

$ rostopic pub -1 /head_pan_joint/command std_msgs/Float64 -- -1.0 

Notice how the servo does not respond.  To re-enable the servo, run the command: 

$ rosservice call /head_pan_joint/enable true 

Then try the position command again: 

$ rostopic pub -1 /head_pan_joint/command std_msgs/Float64 -- -1.0 

This time the servo should move.  The enable service comes in handy when we want to 

disable a servo for a period of time to let it cool down or otherwise take it offline for a 

bit.  In the meantime, other nodes can still publish position commands and they will 

simply be ignored.  We will look at two more services, relax and set_speed in the 

next section on testing real servos. 

We will defer testing arm and head trajectory controllers until the chapter on Arm 

Navigation after we have learned more about joint trajectories and arm kinematics. 

 5.5  Testing the Arbotix Joint Controllers with Real Servos 

Now that we have things working in the ArbotiX simulator, it is time to try things out 

with real servos.  Assuming you have a robot with an arm or at least a pan-and-tilt head, 
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start by running the launch file for your robot which in turn should load the controller 

configuration file for your servos. 

If your robot does not have an arm but does have a pan-and-tilt head that uses AX-12 

servos, you can use the launch file pi_robot_head_only.launch in the 

rbx2_bringup/launch directory.  This launch file uses the configuration file 

pi_robot_head_only.yaml in the rbx2_dynamixels/config/arbotix directory 

and connects to two Dynamixel AX-12 servos with hardware IDs 1 and 2 and with joint 

names head_pan_joint and head_tilt_joint.   

Assuming you have your servos connected to a USB2Dynamixel controller on USB port 

/dev/ttyUSB0, run the launch file with the sim parameter set to false: 

$ roslaunch rbx2_bringup pi_robot_head_only.launch sim:=false 

If your USB2Dynamixel controller is connected to a different USB port, you can run the 

launch file with the port argument.  For example, if your controller is on USB port 

/dev/ttyUSB1, use the command:  

$ roslaunch rbx2_bringup pi_robot_head_only.launch sim:=false 

port:=/dev/ttyUSB1 

(In the Appendix, we show how to create more descriptive port names like  

/dev/usb2dynamixel that will work no matter what underlying physical port is used 

by the OS.) 

After a brief delay, you should see the rqt_robot_monitor GUI appear that should 

look like the following image:  
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If the USB2Dynamixel controller has successfully connected to the two servos, the two 

joints will appear in the rqt_robot_monitor window as shown above.  We will 

explore this monitor in detail in the next chapter on ROS Diagnostics. 

You should also find that the servos have been started in the relaxed state so that they 

can be turned by hand.  This is because the launch file above runs the 

arbotix_relax_all_servos.py node. 

As with the fake robot, let's begin by trying to move the pan-and-tilt head: 

$ rostopic pub -1 /head_pan_joint/command std_msgs/Float64 -- 1.0  

This command should pan the head smoothly to the left (counter-clockwise) through 

1.0 radians or about 57 degrees.  (If the head rotates clockwise, then your arbotix's 

configuration file needs to be edited so that the head servo's invert parameter is set to 

True.  Or, if it was already set to True for some reason, set it to False instead.  Then 

restart your robot's launch file and try the above command again.) 

To change the speed of the head pan servo to 1.5 radians per second, use the 

set_speed service: 

$ rosservice call /head_pan_joint/set_speed 1.5 

Then try panning the head back to center at the new speed: 
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$ rostopic pub -1 /head_pan_joint/command std_msgs/Float64 -- 0.0 

To relax a servo so that you can move it by hand, use the relax service: 

$ rosservice call /head_pan_joint/relax 

Now try rotating the head by hand.  Note that relaxing a servo does not prevent it from 

moving when it receives a new position command.  For example, re-issue the last 

panning command: 

$ rostopic pub -1 /head_pan_joint/command std_msgs/Float64 -- 1.0 

The position command will automatically re-enable the torque and move the servo.  

Note also that the servo also remembers the last speed setting. 

To fully disable a servo so that it relaxes and no longer responds to position commands, 

use the enable service with the argument false: 

$ rosservice call /head_pan_joint/enable false 

You should now be able to turn the servo by hand.  Next, try sending the servo a new 

position: 

$ rostopic pub -1 /head_pan_joint/command std_msgs/Float64 -- -1.0 

This time the servo should not respond.  To re-enable the servo, run the command: 

$ rosservice call /head_pan_joint/enable true 

Then try the position command again: 

$ rostopic pub -1 /head_pan_joint/command std_msgs/Float64 -- -1.0 

Now the servo should move again.  The enable service comes in handy when we want to 

disable a servo for a period of time to let it cool down or otherwise take it offline for a 

bit.  In the meantime, other nodes can still publish position commands and they will 

simply be ignored. 

 5.6  Relaxing All Servos 

In Volume 1 we used the script called relax_all_servos.py found in the 

rbx1_dynamixels package to turn off the torque on all Dynamixel servos at the same 

time.  That script was written assuming the dynamixel_motor package was being used 
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to controller the servos.  Now that we are using the arbotix package, we need to 

modify the script to use the appropriate services used by the arbotix joint controllers. 

The new script is called arbotix_relax_all_servos.py and is found in the 

directory rbx2_dynamixels/scripts.  Let's take a quick look at it now as it nicely 

illustrates how to access the arbotix joint services within a ROS node. 

Link to source:  arbotix_relax_all_servos.py 

1 #!/usr/bin/env python 
2 
3 import rospy 
4 from std_srvs.srv import Empty 
5 from arbotix_msgs.srv import SetSpeed 
6 
7 class Relax(): 
8 def __init__(self): 
9 rospy.init_node('relax_all_servos') 
10         
11        # The list of joints is stored in the /arbotix/joints parameter 12        

self.joints = rospy.get_param('/arbotix/joints', '') 
13         
14 # Set a moderate default servo speed 
15 default__speed = rospy.get_param('~default_speed', 0.5) 
16         
17 # A list to hold the relax services 
18 relax_services = list() 
19         
20 # A list to hold the set_speed services 
21 set_speed_services = list() 
22         
23        # Connect to the relax and set_speed service for each joint 24        

for joint in self.joints: 
25 relax_service = '/' + joint + '/relax' 
26 rospy.wait_for_service(relax_service)   
27 relax_services.append(rospy.ServiceProxy(relax_service, Empty)) 
28             
29 speed_service = '/' + joint + '/set_speed' 
30 rospy.wait_for_service(speed_service)   
31 set_speed_services.append(rospy.ServiceProxy(speed_service, SetSpeed)) 
32 
33        # Set the servo speed to the default value 

34        for set_speed in set_speed_services: 35            

set_speed(default_speed) 
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36 
37 # Relax each servo 
38 for relax in relax_services: 
39 relax() 
40             
41        # Do it again just to be sure 42        

for relax in relax_services: 
43            relax() 
44         
45 if __name__=='__main__': 
46 try: 
47 Relax() 
48 rospy.loginfo("All servos relaxed.") 49    except 

rospy.ROSInterruptException: 
50        rospy.loginfo("All servos relaxed.") 

Let's break this down line by line. 
4 from std_srvs.srv import Empty 
5 from arbotix_msgs.srv import SetSpeed 

First we import the two service message types we will need.  The arbotix relax 

service uses an Empty message from the standard services package (std_srvs).  The 

set_speed service uses the SetSpeed message from the arbotix_msgs package. 

12        self.joints = rospy.get_param('/arbotix/joints', '') 

The arbotix_driver node stores all of its parameters under the /arbotix 

namespace on the ROS parameter server.  The /arbotix/joints parameter contains 

the list of joints (and their individual parameters).  We will need this list so we can 

iterate through all the joints to relax each one in turn. 

17 # A list to hold the relax services 
18 relax_services = list() 
19         
20 # A list to hold the set_speed services 
21 set_speed_services = list() 

Here we initialize a pair of lists to hold the relax and set_speed services for each 

servo we will connect to shortly. 

24 for joint in self.joints: 
25 relax_service = '/' + joint + '/relax' 
26 rospy.wait_for_service(relax_service)   
27 relax_services.append(rospy.ServiceProxy(relax_service, Empty)) 
28             
29 speed_service = '/' + joint + '/set_speed' 
30 rospy.wait_for_service(speed_service)   
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31 set_speed_services.append(rospy.ServiceProxy(speed_service, 
SetSpeed)) 

Now we iterate through the list of joints, connect to the relax and set_speed service 

for each joint, then append a proxy to that service to the appropriate list.  For example, if 

the first joint in the list is called head_pan_joint, then the variable relax_service  

is set to '/head_pan_joint/relax' which we know from the previous section is the 

correct service name.  We then use a call to wait_for_service() to make sure the 

service is alive before appending the appropriate ServiceProxy object to the list of 

relax services.  Notice how we use the Empty service type we imported at the top of the 

script to specify the type for the relax service.  The same steps are then followed for the 

set_speed service. 

33        # Set the servo speed to the default value 34        
for set_speed in set_speed_services: 
35            set_speed(default_speed) 

With the lists of services in hand, we loop through the set_speed_services list and 

set each service to the default speed which should bet set moderately low.  (We use 0.5 

radians per second in the script).  The reason we do this is to protect us from any 

surprises the next time the service is activated.  If we were to relax a servo right after it 

was set to a high speed, the next position request could set it flying faster than we would 

like.  Line 35 shows how to call the set_speed service using the proxy we created 

together with an argument equal to the desired speed. 

37 # Relax each servo 
38 for relax in relax_services: 
39 relax() 

With all servos set to a safe speed, we then iterate through the relax services to turn of 

the torque for each servo.  Note how in Line 39 we call the relax() service proxy with 

an empty argument since relax service uses the Empty message type. 

 5.7  Enabling or Disabling All Servos 

Two additional scripts are provided in the rbx2_dynamixels/scripts directory to 

disable or enable all servos at once.  To disable all servos at once, use the script 

arbotix_disable_all_servos.py: 

$ rosrun rbx2_dynamixels arbotix_disable_all_servos.py 
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This script can be used as a kind of software "stop switch" since disabling the servos 

will cause them to both relax and become unresponsive to any further motion requests. 

To re-enable all servos at the same time, run the arbotix_enable_all_servos.py 

script: 

$ rosrun rbx2_dynamixels arbotix_enable_all_servos.py 

The servos now respond to position requests. 
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 6.  ROBOT DIAGNOSTICS 

Any self-respecting autonomous robot would be expected to monitor the status of its 

hardware to ensure it can carry out assigned tasks without running out of power or 

damaging its components.  For a mobile robot equipped with a pan-and-tilt head or a 

multi-jointed arm, the key variables that require monitoring include: 

• battery levels for both the robot and onboard computer (e.g. laptop battery) 

• current drawn by the drive motors (to avoid overload) 

• temperatures and loads on the joints (to avoid frying the servos) 

It is up to the hardware driver for a given device to read the raw values of these 

variables.  But we need a way to represent the values using a standard message type so 

that other ROS nodes can monitor them without having to worry about the underlying 

driver and measurement units. 

To this end, ROS provides the diagnostics stack for collecting and summarizing data 

from sensors and actuators that can be used to flag potential problems.  The key 

components of the diagnostics stack include the DiagnosticStatus message type,  

the diagnostic_updater API, the diagnostic_aggregator, and an analyzer 

configuration file.  The API enables us to convert raw sensor values to an array of  

DiagnosticStatus fields which is then published as a DiagnosticArray message 

on the /diagnostics topic.  The diagnostic_aggregator categorizes and 

organizes these messages into a hierarchical tree as specified by one or more analyzer 

configuration files and publishes the result on the /diagnostics_agg topic.  The 

rqt_robot_monitor utility subscribes to the /diagnostics_agg topic and displays 

the status of any monitored components in a color-coded graphical form that makes it 

easy to spot a problem, or to drill down to a more detailed view of a given component. 

You can also write your own nodes that can subscribe to the /diagnostics or 

/diagnostics_agg topics to monitor the status of various components and act 

appropriately when something is in trouble. 

In some cases, the ROS drivers for the hardware you are using will already publish 

diagnostics information on the/diagnostics topic;  you can then simply subscribe to 

the /diagnostics topic to make use of the information in your own nodes or use 

rqt_robot_monitor to visually inspect diagnostic information.  In other cases, you 

might have to write your own driver for publishing the diagnostics information you 

require.  Or, if a driver already exists but the data is not yet in the form of a ROS 
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diagnostics message, you will need to convert it appropriately as we show later in the 

chapter. 

We will begin by assuming that the information we need is already published on the 

/diagnostics topic by one or more nodes.  In a later section we'll describe how to add 

a diagnostics publisher to your own hardware drivers. 

 6.1  The DiagnosticStatus Message 

The ROS DiagnosticStatus message type allows us to represent different kinds of 

diagnostic information in a common format.  To see the message definition, run the 

command: 

$ rosmsg show diagnostic_msgs/DiagnosticStatus  

byte OK=0 byte 
WARN=1 byte 
ERROR=2 byte 
level string name 
string message 
string 
hardware_id  
diagnostic_msgs/KeyValue[] values  
  string key   
string value 

As we can see above, the message first enumerates three general status levels: OK, WARN 

and ERROR. The level field holds the current status of the device itself and will have a 

value of 0, 1 or 2 to indicate a status of OK, WARN or ERROR, respectively.  Next we see 

three string fields for storing the name of the component, an arbitrary message, and 

its hardware_id.  The rest of the message is an array of key-value pairs that can 

store the raw values returned by the hardware driver.  For example, the pair 

key=temperature, value=31 would mean that the temperature of the device is 31 

degrees Celsius. 

NOTE: For readers looking ahead to ROS Indigo, a new status of STALE has been 

added to the DiagnosticStatus message.  This means that the message will have a 

new MD5 signature and will not be compatible with nodes running under ROS Indigo or 

earlier.  Therefore, be sure not mix diagnostics nodes or robot monitors running on 

preIndigo versus post-Indigo ROS distributions. 

A given hardware driver will typically publish an array of such values using the 

DiagnosticArray message type which looks like this:  
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std_msgs/Header header  
diagnostic_msgs/DiagnosticStatus[] status  

As we can see, this message consists of a ROS header and an array of  

DiagnosticStatus messages, one for each component being monitored.  This will 

become clearer below when we look at a concrete example using Dynamixel servos. 

 6.2  The Analyzer Configuration File 

To monitor a device using the diagnostic aggregator, we need an entry in an analyzer 

configuration file such as the one shown below that is often used with Dynamixel 

servos: 
1 pub_rate: 1.0 

2 analyzers: 
3   joints: 
4     type: GenericAnalyzer 
5     path: 'Joints' 
6     timeout: 5.0 
7     contains: '_joint' 

     

While it is possible to define custom analyzers for different devices, we will only need 

to use the GenericAnalyzer type.  You can find out more about analyzer 

configuration parameters in the GenericAnalyzer Tutorial on the ROS Wiki.  For now, 

the parameters shown above will suffice.  Let's break it down line by line. 

Line 1 specifies the rate at which we want the aggregator to publish diagnostics 

information.  A rate of 1.0 Hz is probably fast enough for most devices such as servos, 

batteries, drive motors, etc. 

Line 2 specifies that all our parameters will fall under the ~analyzers namespace 

which is required when using a GenericAnalyzer with the diagnostic aggregator.  We 

won't need to access this namespace directly but the line must appear in our config file. 

Line 3 indicates that we will use the joints namespace under the ~analyzers 

namespace to store the aggregated diagnostics for servo joints. 

Line 4 indicates that we will use the GenericAnalyzer plugin type to analyze these 

devices. 

In Line 5, the path parameter defines the string that will be used to categorize these 

devices when viewed in the rqt_robot_monitor GUI.  In this case, we want all our 

servos to be listed under the category 'Joints'. 
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Line 6 defines a timeout for receiving an update from the device.  If no data is 

received from the device within this time frame, the device will be marked as "Stale" in 

the rqt_robot_monitor. 

Finally, line 7 is really the key to the entire file.  Here we specify a string that should 

appear somewhere in the diagnostic array message to identify the type of device we 

want to monitor.  As we will see in the next section, the names of our joint controllers all 

contain the string "_joint", namely head_pan_joint and head_tilt_joint.  So 

using the string "_joint" for the contains parameter should work in this case.  As 

shown in the online GenericAnalyzer Tutorial, one can also use the parameter 

startswith instead of contains.  In that case, we could use the word 'Joint' since 

the name field in the diagnostic messages for the servos all begin with 'Joint'. 

In a later section, we will see how we can configure more than one analyzer in a single 

configuration file. 

 6.3  Monitoring Dynamixel Servo Temperatures 

If you are using Dynamixel servos on your robot, you know they can get hot under load.  

Both overheating and excessive loads can easily damage a servo which can become 

rather expensive if you are not careful. 

Dynamixels have built-in protection against such failures by automatically shutting 

down when either the temperature, the load, or the voltage exceeds a pre-defined 

threshold.  The thresholds are set directly in firmware so this level of damage control 

occurs independently of ROS.  The factory default values for these thresholds are 

generally OK.  However, it's not a bad idea to monitor servo temperatures and loads at 

the ROS level as well.  This way we can preemptively give a servo or group of servos a 

rest when they might be in danger of overheating or overloading.  Furthermore, if a 

servo is allowed to be shutdown via the firmware mechanism, it is often necessary to 

power-cycle the entire bus to regain control of the servo even after it cools down or is no 

longer overloaded. 

 6.3.1  Monitoring the servos for a pan-and-tilt head 

For the sake of illustration, we'll assume that your robot has a pan-and-tilt head using a 

pair of Dynamixel servos like we covered in Chapter 12 of Volume 1.  We'll use the 

launch file pi_robot_head_only.launch in the rbx2_bringup/launch directory 

as we did when testing the arbotix driver with real servos in the previous chapter. This 

launch file uses the arbotix driver to connect to two AX-12 Dynamixel servos with 
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hardware IDs 1 and 2 and with joint names head_pan_joint and 

head_tilt_joint. 

Assuming you have your servos connected to a USB2Dynamixel controller on USB port 

/dev/ttyUSB0, run the launch file with the sim parameter set to false: 

$ roslaunch rbx2_bringup pi_robot_head_only.launch sim:=false 

If your USB2Dynamixel controller is connected to a different USB port, you can run the 

launch file with the port argument.  For example, if your controller is on USB port 

/dev/ttyUSB1, use the command: 

$ roslaunch rbx2_bringup pi_robot_head_only.launch sim:=false 

port:=/dev/ttyUSB1 

After a brief delay, you should see the rqt_robot_monitor window appear like the 

image on the right.  Here we see that the monitor has 

successfully detected our two head servos and 

indicates that the overall status for each is OK.  You 

can double-click on a joint name to bring up a 

detailed status screen such as the one shown below 

for the head pan joint: 

This status 

screen indicates 

that the head pan 

servo is essentially 

centered 

(position =  

-0.005), the 

temperature is a safe 33 degrees Celsius, the 

input voltage is 12V (multiplied by 10 for some 

reason—it is not 120 volts!), the error rate is 

a perfect 0.0% and the torque is currently off 

meaning the servo is relaxed and can be 

turned by hand. 
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The arbotix driver is programmed to publish diagnostics data for the servos it controls 

on the /diagnostics topic.  Our launch file then runs the diagnostic_aggregator 

node and rqt_robot_monitor to summarize the status of each servo.  If a servo 

becomes overheated or overloaded, its status will turn to ERROR and it will be displayed 

in red instead of green.  If it is getting warm but not yet too hot, the status will be WARN 

with a display color of yellow.  The arbotix driver is hard coded to assign an ERROR 

status for any temperature over 60 degrees Celsius and a WARN status for a temperature 

of 50 degrees or more.  We will learn how to write our own diagnostics publisher later 

in the chapter and how we can set the thresholds as we like. 

Let us now take a closer look at the pi_robot_head_only.launch file to see how 

the aggregator and rqt monitor nodes are run.  Near the bottom of the launch file you 

will find the following lines: 
   <node pkg="diagnostic_aggregator" type="aggregator_node"  
name="diagnostic_aggregator" clear_params="true" unless="$(arg sim)"> 
      <rosparam command="load" file="$(find  
rbx2_dynamixels)/config/head_only_diagnostics.yaml" />    
</node> 

   <node pkg="rqt_robot_monitor" type="rqt_robot_monitor"  
name="rqt_robot_monitor" unless="$(arg sim)" /> 

Here we run the diagnostic_aggregator node which loads the configuration file 

head_only_diagnostics.yaml file found in the rbx2_dynamixels/config  

directory.  We'll look at that file shortly.  We also delete any left over diagnostic 

aggregator parameters that might be left over from previous runs by using the 

clear_params="true" argument. 

Next we fire up the rqt_robot_monitor node which generates the GUI shown earlier 

for viewing servo status visually. 

The head_only_diagnostics.yaml file defines the analyzers we want to run and 

how the information should be organized.  Here's what that file looks like: 
1 pub_rate: 1.0  
2 analyzers:  
3   joints:  
4     type: GenericAnalyzer  
5     path: 'Joints'  
6     timeout: 5.0  
7     contains: '_joint' 

We have already described this very same configuration file in the section on Analyzer 

Configuration files.  If you think that a publishing rate of 1 Hz is too slow, you can 

increase the pub_rate parameter.  Line 7 indicates that the data we want to summarize 

comes from diagnostic entries whose name contains the string '_joint'.  To see why this 
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works, we need to examine the actual diagnostic messages being published on the 

/diagnostics topic.  Let's turn to that next. 

 6.3.2  Viewing messages on the /diagnostics topic 

As we have already explained, the arbotix driver takes care of publishing ROS 

diagnostic messages for us.  The driver talks directly to the servo firmware over the 

serial port and then uses the ROS Diagnostics API to publish the data on the 

/diagnostics topic. 

To see the messages being published on the /diagnostics topic while you are 

connected to the servos, open another terminal and run the command: 

$ rostopic echo /diagnostics | more 

The first part of the output should look something like this: 

header:   seq: 2125   
stamp:     secs: 
1405518802     
nsecs: 322613000   
frame_id: '' status:  
-     level: 0     
name: head_controller     
message: OK     
hardware_id: ''     
values:  
-         key: State         
value: Not Active  
-     level: 0     
name: head_pan_joint     
message: OK     
hardware_id: ''     
values:  
-         key: Position         
value: -1.01242732  
      -  
        key: Temperature         
value: 39  
-         key: Voltage         
value: 120  

First we see the header fields, then the beginning of the status array.  The hyphen (-) 

character indicates the beginning of an array entry.  The first hyphen above indicates the 

beginning of the first entry of the status array.  This entry has array index 0 so this 
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first entry would be referred to as /diagnostics/status[0]. In this case, the entry 

refers to the head controller that controls both servos.  Since the head controller is a 

software component, it does not have position or temperature so let's look at the next 

array entry. 

The second block above would have array index 1 so this entry would be accessed as  

/diagnostics/status[1]. In this case, the entry refers to the head pan joint.  The 

indented hyphens below the values keyword indicate the entries in the key-value 

array for this diagnostic element.  So the Temperature value for this servo would be 

indexed as /diagnostics/status[1].values[1].  Note how we use a period (.) to 

indicate subfields of an array element.  If you wanted to echo just the temperature of the 

head pan servo, you could use the following command: 

$ rostopic echo /diagnostics/status[1].values[1] 

Returning now to the output above, notice that the first few status fields for the head pan 

joint are: 

status:  
-     level: 0     
name: head_pan_joint     
message: OK     
hardware_id: ''  

The critical result here is the value for the level subfield which is 0 in this case.  Recall 

that a value of 0 maps to a diagnostics status of OK.  The relevant component should be 

identified by the name and sometimes the hardware_id fields.  Here we see that this 

array element refers to the head_pan_joint  but that the hardware ID is not specified. 

If you issue the command 'rostopic echo /diagnostics | more' again and keep 

hitting the space bar to scroll through the messages, you will see status messages for 

each servo.  In particular, the message for the head tilt joint begins like this: 

-     level: 0     
name: head_tilt_joint     
message: OK     
hardware_id: ''  

So we see that the value of the name field is simply the joint name we assigned to each 

servo in our ArbotiX config file.  Since each joint name ends with the string '_joint', 

our analyzer configuration file, head_only_diagnostics.yaml, can use this string 
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for the value of the contains parameter to let the aggregator know that diagnostic 

messages containing this string in their name field are the ones were interested in. 

 6.3.3  Protecting servos by monitoring the /diagnostics topic 

The rbx2_diagnostics package includes a script called monitor_dynamixels.py 

in the nodes subdirectory.  This node subscribes to the /diagnostics topic, extracts 

the messages relevant to the servos and disables the servos if they appear to be in 

trouble.  The script then counts off a timer to let the servos cool down, then re-enables 

them when their temperature is back to normal. 

The script is fairly long so let's focus on the key lines. 
4  from diagnostic_msgs.msg import DiagnosticArray, DiagnosticStatus 
5  from arbotix_msgs.srv import Relax, Enable 

Near the top of the script, we import the diagnostics message types we will need as well 

as the Relax and Enable services from the arbotix_msgs package. 

12 # The arbotix controller uses 

the /arbotix namespace 
13 namespace = '/arbotix' 14 
15 # Get the list of joints (servos) 
16 self.joints = rospy.get_param(namespace + '/joints', '')     
17         
18 # Minimum time to rest servos that are hot 
19 self.minimum_rest_interval = rospy.get_param('~minimum_rest_interval', 60) 
20         
21 # Initialize the rest timer 
22 self.rest_timer = 0 
23 
24 # Are we already resting a servo? 
25 self.resting = False 
26         
27 # Are the servos enabled? 
28 self.servos_enabled = False 29 
30        # Have we issued a warning recently? 31        

self.warned = False 

32 
33 # Connect to the servo services 
34 self.connect_servos() 
35         
36        rospy.Subscriber('diagnostics', DiagnosticArray, self.get_diagnostics) 

The list of joints controlled by the arbotix_driver node is stored in the ROS 

parameter /arbotix/joints.  In fact, this parameter is the same as the joints 
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parameter we defined in our arbotix configuration file.  So we store the joint list 

(actually a dictionary) in the variable self.joints. 

We also read in a parameter for the minimum_rest_interval (in seconds) to give a 

servo time to cool off before re-enabling.  This parameter can be set in the launch file 

but we give it a default value of 60 seconds.  If we left out the minimum cool-off period, 

then an overheating servo would be disabled just long enough to cool off one or two 

degrees, then it would probably just overheat right away again and so on. 

Next we initialize a timer to track how long we have disabled a servo as well as a couple 

of boolean flags to indicate when the servos are disabled and when we are resting.  Then 

we call the connect_servos() function (described below) that takes care of 

connecting to the various topics and services related to controlling the Dynamixels. 

The final line above subscribes to the /diagnostics topic and sets the callback 

function to self.get_diagnostics() that we will look at next. 

35 def get_diagnostics(self, msg): 
36 if self.rest_timer != 0: 
37 if rospy.Time.now() - self.rest_timer < 

rospy.Duration(self.minimum_rest_interval): 38                return 39            
else: 

40 self.resting = False 
41 rest_timer = 0 

In the first part of the callback function, we check the status of the rest_timer and if 

we still have some time left on the clock we return immediately.  Otherwise we reset the 

timer to 0 and the resting flag to False, then continue on to the following lines. 

45 for k in range(len(msg.status)): 
46 # Check for the Dynamixel identifying string in the name field 47            

if not '_joint' in msg.status[k].name: 
48 # Skip other diagnostic messages 
49 continue 

The callback function receives the DiagnosticArray message as the argument msg.  

Each element of the array is an individual diagnostic message so we want to iterate over 

all such messages.  The first thing we check for is that the string '_joint' is in the 

message name and if it is not, we skip to the next message using the continue 

statement. 
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48            # Check the DiagnosticStatus level for this servo 49            

if msg.status[k].level == DiagnosticStatus.ERROR: 
50                # If the servo is overheating, then disable all servos 51                

if not self.resting: 
52 rospy.loginfo("DANGER: Overheating servo: " + str(msg.status[k].name)) 
53 rospy.loginfo("Disabling servos for a minimum of " + 
str(self.minimum_rest_interval) + " seconds...") 
54        
55 self.disable_servos() 
56 self.servos_enabled = False 
57 self.resting = True 
58 break 
59 elif msg.status[k].level == DiagnosticStatus.WARN: 
60 # If the servo is getting toasty, display a warning 
61 rospy.loginfo("WARNING: Servo " + str(msg.status[k].name) + " getting 
hot...") 
62 self.warned = True 
63 warn = True 

Now that we know we are dealing with a joint message, we check the diagnostic status 

level.  If the status indicates ERROR, then this servo is overheated and we need to disable 

it.  We could disable just the one servo, but to simplify things for now, we disable all 

servos when any one of them overheats. 

If the servo is not hot enough for an ERROR status but it is warm enough for a WARN 

status, we display a warning message but do not disable the servos.  We also set a couple 

of flags so we don't keep repeating the same warning message. 

65        # No servo is overheated so re-enable all servos 66        

if not self.resting and not self.servos_enabled: 
67 rospy.loginfo("Dynamixel temperatures OK so enabling") 
68 self.enable_servos() 
69 self.servos_enabled = True 
70 self.resting = False 

Finally, if no servos are overheating and we are not currently in a rest period, re-enable 

the servos. 

Let's now take a look at the three functions we called earlier in the script: 

connect_servos(), disable_servos() and enable_servos(). 

78 def connect_servos(self): 
79 # Create a dictionary to hold the torque and enable services 
80 self.relax = dict() 
81 self.enable = dict() 
82 
83 # Connect to the set_speed services and define a position publisher for 

each servo 
84 rospy.loginfo("Waiting for joint controllers services...") 
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85                 
86 for joint in sorted(self.joints): 
87 # A service to relax a servo 
88 relax = '/' + joint + '/relax' 
89 rospy.wait_for_service(relax)  
90 self.relax[joint] = rospy.ServiceProxy(relax, Relax) 
91                 
92 # A service to enable/disable a servo           
93 enable_service = '/' + joint + '/enable' 
94 rospy.wait_for_service(enable_service)  
95 self.enable[joint] = rospy.ServiceProxy(enable_service, Enable) 
96                 
97        rospy.loginfo("Connected to servos.") 

The connect_servos() function works in a similar way to the 

arbotix_relax_all_servos.py script we examined in the previous chapter.  In this 

case, we create a proxy to the relax and enable services for each joint and store the 

proxies in a dictionary indexed by the joint name.  We can then use these services in the 

disable_servos() and enable_servos() functions.  

99 def disable_servos(self): 
100 for joint in sorted(self.joints): 
101 self.enable[joint](False) 
102                 
103 def enable_servos(self): 
104 for joint in sorted(self.joints): 
105 self.enable[joint](True) 

Once we have the relax and enable service proxies defined, it is straightforward to 

disable or enable all servos by iterating through the list of joints and calling the 

appropriate service.  To relax and disable a servo, we call the enable service with the 

request value set to False and the servo will relax and ignore any future position 

requests.  To re-enable a servo, we call the enable service with a request value of 

True. 

To try out the script, first make sure you are running the launch file for your  

Dynamixels, like the pi_robot_head_only.launch file we used in the previous 

section.  Then run the monitor_dynamixels.launch file: 

$ roslaunch rbx2_diagnostics monitor_dynamixels.launch 

You should see the following series of INFO messages: 
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process[monitor_dynamixels-1]: started with pid [5797] [INFO] 
[WallTime: 1403361617.457575] Waiting for joint controllers 
services...  
[INFO] [WallTime: 1403361617.471666] Connected to servos.  
[INFO] [WallTime: 1403361617.662016] Dynamixel temperatures OK so 
enabling 

You can now run any other nodes such as head tracking that use the servos.  The 

monitor_dynamixels node will monitor the servo temperatures and if any servo gets 

too hot, it will disable all servos until they are all back to a safe temperature.  In the 

meantime, other nodes can continue publishing servo commands but they will simply be 

ignored until the Dynamixels are re-enabled. 

 6.4  Monitoring a Laptop Battery 

If your robot carries a laptop on board, then you might like to monitor the laptop's 

battery status and publish the result on the /diagnostics array.  We can then use that 

information to know when the battery is in trouble or the computer needs a recharge.   

Fortunately for us, the folks at Willow Garage long ago created a node to monitor the 

TurtleBot's laptop battery by way of the system file/proc/acpi/battery/BAT1.  We 

have included a modified version of that script called laptop_battery.py and it can 

be found in the rbx2_bringup/nodes subdirectory. 

If you are working on a laptop as you read this, you can test out the script as follows: 

$ roslaunch rbx2_bringup laptop_battery.launch 

The launch file specifies the rate at which to publish the diagnostics data (default 1Hz) 

and the apci_path to the battery file (default /proc/acpi/battery/BAT1).  

Assuming the launch file runs without error, take a look at the data being published on 

the /diagnostics topic: 

$ rostopic echo /diagnostics | more 

The output on the screen should look something like this: 

header:  
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  seq: 21   stamp:     
secs: 1395878798     
nsecs: 494307994   
frame_id: '' 
status:  
  -     level: 0     
name: Laptop Battery     
message: OK     
hardware_id: ''     
values:  
      -  
        key: Voltage (V)         
value: 15.12  
      -  
        key: Current (A)         
value: -19.232  
      -  
        key: Charge (Ah)         
value: 27.412  
      -  
        key: Capacity (Ah)         
value: 33.46  
      -  
        key: Design Capacity (Ah)  
        value: 46.472 --
-  

As you can see, the laptop battery node publishes the raw voltage, charge, and capacity 

values as key-value pairs.  What is not apparent until you look carefully at the 

laptop_battery.py script, is that the overall diagnostics level will always be 0 (i.e.   

OK) as long as the battery is detected and its status has been updated in a timely manner.  

In other words, the status published here is not related to the battery's charge—it only 

reflects whether or not the battery is present and can be monitored.  A new script, 

detailed in the next section, will publish a diagnostics message based on the charge 

itself. 

 6.5  Creating your Own Diagnostics Messages 

The laptop battery node introduced in the previous section also publishes information 

about the battery charge on the topic /laptop_charge.  Assuming you still have the 

laptop battery node running, you can view the messages being published on this topic 

with the command: 

$ rostopic echo /laptop_charge | more 

header:  
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  seq: 31   stamp:     secs: 
1395880223     nsecs: 
497864007   frame_id: '' 
voltage: 15.1199998856 rate: -
11.0220003128 charge: 
21.4249992371 capacity: 
33.4599990845 design_capacity: 
46.4720001221  
percentage: 64 
charge_state: 0 
present: True ---  

As you can see from the output, the message includes the voltage, rate of charge or 

discharge (depending on the sign),  charge level, capacity, percent charge remaining, 

charge_state (0 = discharging, 1 = charging, 2 = charged) and whether or not it is 

present. 

What we'd like to do is turn the percent charged value into a diagnostics level of OK, 

WARN or ERROR and publish it on the /diagnostics topic as a standard ROS 

diagnostics message.  Our new script called, monitor_laptop_charge.py, 

subscribes to the /laptop_charge topic and converts the percent charge to one of the 

three standard diagnostic status levels: OK, WARN or ERROR. 

We will use the monitor_laptop_charge.launch file to bring up the node and run 

the diagnostic aggregator with an appropriate configuration file.  The launch file looks 

like this: 

1 <launch> 
2 <node pkg="rbx2_diagnostics" type="monitor_laptop_charge.py" 

name="monitor_laptop_charge" output="screen"> 3      <param name="warn_percent" 
value="50" /> 

4 <param name="error_percent" value="20" /> 
5 </node> 
6    
7 <node pkg="diagnostic_aggregator" type="aggregator_node" 

name="diagnostic_aggregator" clear_params="true"> 
8 <rosparam command="load" file="$(find rbx2_diagnostics)/config/power.yaml" 

/> 
9 </node> 
10 
11 <node pkg="rqt_robot_monitor" type="rqt_robot_monitor" name="rqt_robot_monitor" 

/> 
12 </launch> 

Lines 2-5 launch the monitor_laptop_charge.py node and set the warning battery 

level to 50% and the error level to 20%.  Lines 7-9 bring up the  
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diagnostic_aggregator with the configuration file power.yaml found in the 

rbx2_diagnostics/config directory.  Finally, Line 11 brings up the 

rqt_robot_monitor GUI in case it is not already running. 

The power.yaml configuration file looks like this: 
1. pub_rate: 1.0 
2. analyzers: 
3.   power: 
4.     type: GenericAnalyzer 
5.     path: 'Power System' 
6.     timeout: 5.0 
7.     contains: ['Robot Battery', 'Robot Charge', 'Laptop Battery', 'Laptop  

Charge'] 

The publishing rate of 1.0 Hz specified by the pub_rate parameter seems appropriate 

for a battery monitor since battery levels do not change very quickly. 

Line 3 indicates that we will use the power namespace under the ~analyzers 

namespace to store the aggregated diagnostics for battery power. 

Line 4 indicates that we will use the GenericAnalyzer plugin type to analyze these 

devices. 

In Line 5, the path parameter defines the string that will be used to categorize these 

devices when viewed in the rqt_robot_monitor GUI.  In this case, we want all our 

servos to be listed under the category 'Power System'. 

Line 6 defines a timeout for receiving an update from the device.  If no data is received 

from the device within this time frame, the device will be marked as "Stale" in the 

rqt_robot_monitor. 

Finally, in Line 7 we specify a list of strings that should appear somewhere in the 

diagnostic array message to identify the type of device we want to monitor.  

To try it out, first make sure you are on a laptop and then run the 

laptop_battery.launch file if it is not already running: 

$ roslaunch rbx2_brinup laptop_battery.launch 

Next, fire up monitor_laptop_charge.launch: 

$ roslaunch rbx2_diagnostics monitor_laptop_charge.launch 
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After a brief delay you should see the rqt_robot_monitor window appear that should 

look like this: 

 

Under the Power System category, we have two status messages: one for the battery 

overall (i.e. it can be detected) and one for the current charge level.  The first status is 

provided by the laptop_battery.py node whereas the second is published by our 

new node monitor_laptop_charge.py.  Let's take a look at that script now. 

Link to source: monitor_laptop_charge.py 

1 #!/usr/bin/env python 
2 
3 import rospy 
4 from diagnostic_msgs.msg import DiagnosticArray, DiagnosticStatus, KeyValue 
5 from linux_hardware.msg import LaptopChargeStatus 6 
7 class MonitorLaptopCharge(): 
8 def __init__(self): 
9 rospy.init_node("monitor_laptop_charge") 
10         
11 # Get the parameters for determining WARN and ERROR status levels 
12 self.warn_percent = rospy.get_param("~warn_percent", 50) 
13 self.error_percent = rospy.get_param("~error_percent", 20) 
14         
15 # A diagnostics publisher 
16 self.diag_pub = rospy.Publisher('diagnostics', DiagnosticArray) 
17         
18        # Subscribe to the laptop_charge topic 
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19        rospy.Subscriber('laptop_charge', LaptopChargeStatus, 
self.pub_diagnostics) 
20         
21        rospy.loginfo("Monitoring laptop charge...") 
22             
23 def pub_diagnostics(self, msg): 
24 # Pull out the percent charge from the message 
25 percent_charge = msg.percentage 
26         
27 # Initialize the diagnostics array 
28 diag_arr = DiagnosticArray() 
29         
30 # Time stamp the message with the incoming 

stamp 
31 diag_arr.header.stamp = msg.header.stamp32 
33 # Initialize the status message 
34 diag_msg = DiagnosticStatus() 
35         
36        # Make the name field descriptive of what we are measuring 37        

diag_msg.name = "Laptop Charge" 
38         
39 # Add a key-value pair so we can drill down to the percent charge 
40 diag_msg.values.append(KeyValue('percent_charge', str(percent_charge))) 
41         
42 # Set the diagnostics level based on the current charge and the threshold 
43 # parameters 
44 if percent_charge < self.error_percent: 
45 diag_msg.level = DiagnosticStatus.ERROR 
46 diag_msg.message = 'Battery needs recharging' 47        elif percent_charge 

< self.warn_percent: 
48            diag_msg.level = DiagnosticStatus.WARN 49            

diag_msg.message = 'Battery is below 50%'  50        

else: 
51 diag_msg.level = DiagnosticStatus.OK 
52 diag_msg.message = 'Battery charge is OK' 
53         
54 # Append the status message to the diagnostic array 
55 diag_arr.status.append(diag_msg) 
56         
57 # Publish the array 
58 self.diag_pub.publish(diag_arr) 
59         
60 if __name__ == '__main__': 
61 MonitorLaptopCharge() 
62 rospy.spin() 

     

Now let's break it down line by line: 

4 from diagnostic_msgs.msg import DiagnosticArray, DiagnosticStatus, KeyValue 



 

 Robot Diagnostics - 196 

First we need a few message types from the diagnostics_msgs package. 

5 from linux_hardware.msg import LaptopChargeStatus 

We also need the LaptopChargeStatus message type which is defined in the 

linux_hardware package. 

16        self.diag_pub = rospy.Publisher('diagnostics', DiagnosticArray) 

Here we create a publisher to to publish the laptop charge as a DiagnosticArray 

message on the /diagnostics topic. 

19        rospy.Subscriber('laptop_charge', LaptopChargeStatus, 
self.pub_diagnostics) 

And here we create a subcriber to monitor the /laptop_charge topic.  The callback 

function self.pub_diagnostics (explained below) will convert the laptop charge to 

a ROS diagnostics message. 

23 def pub_diagnostics(self, msg): 
24 # Pull out the percent charge from the message 
25 percent_charge = msg.percentage 

We begin the callback function assigned to the /laptop_charge topic subscriber.  

Recall that the LaptopChargeStatus message includes a field for the percentage 

charge remaining so we pull that value from the msg variable that is passed to the 

callback. 

27 # Initialize the diagnostics array 
28 diag_arr = DiagnosticArray() 
29         
30 # Time stamp the message with the incoming stamp 
31 diag_arr.header.stamp = msg.header.stamp 

We want to publish the percent charge as a DiagnosticArray message so first we 

create an empty array as the variable diag_arr.  We then give the array the same 

timestamp as the incoming message stamp. 

33 # Initialize the status message 
34 diag_msg = DiagnosticStatus() 
35         
36 # Make the name field descriptive of what we are measuring 
37 diag_msg.name = "Laptop Charge" 



 

 Robot Diagnostics - 197 

Since a DiagnosticArray is made up of individual DiagnosticStatus messages, 

we initial the variable diag_msg accordingly and assign a suitable label to the name 

field. 

39 # Add a key-value pair so we can drill down to the percent charge 
40 diag_msg.values.append(KeyValue('percent_charge', 

str(percent_charge))) 

Recall the that the values array in a DiagnosticStatus message are stored as  

KeyValue pairs where both members of the pair are strings.  So here we append a 

KeyValue pair where the key is the string 'percent_charge' and the value is the actual 

percent charge converted to a string. 

44 if percent_charge < self.error_percent: 
45 diag_msg.level = DiagnosticStatus.ERROR 
46 diag_msg.message = 'Battery needs recharging' 47        elif percent_charge 

< self.warn_percent: 
48            diag_msg.level = DiagnosticStatus.WARN 49            

diag_msg.message = 'Battery is below 50%'  50        

else: 
51 diag_msg.level = DiagnosticStatus.OK 
52 diag_msg.message = 'Battery charge is OK' 

We then set the value of the level and message fields of the diag_msg variable 

according to the thresholds we have set in the error_percent and warn_percent 

parameters. 

54 # Append the status message to the diagnostic array 
55 diag_arr.status.append(diag_msg) 
56         
57 # Publish the array 
58 self.diag_pub.publish(diag_arr) 

Finally, we append the diagnostic status message we have created to the diagnostics 

array and publish the result. 

 6.6  Monitoring Other Hardware States 

The monitor_laptop_battery.py script described in the previous section illustrates 

how to construct and publish a diagnostics message based on some other value such as a 

sensor reading or, in that case, the charge level of the laptop battery.  You can mimic this 

script to monitor the values of other hardware states you might want to add to the 

diagnostics array. 
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For example, if your robot is powered by a main battery and you can measure that 

battery's charge level with some type of sensor (e.g. a Phidgets voltage sensor), then you 

can convert that sensor reading to a ROS diagnostics message just as we did with the 

laptop charge.  Similarly, some motor controller boards have pins for reporting the 

instantaneous current being drawn by the motors.  If you want to keep tabs on these 

readings, convert them to ROS diagnostic messages and add them to your array. 

The end result will be that all your hardware diagnostics can be displayed in the same 

rqt_monitor and with a quick glance at the monitor, you can see if any component has 

turned red indicating a status of WARN or ERROR   Conversely, if all status indicators are 

green, your robot should be generally OK. 
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 7.  DYNAMIC RECONFIGURE 

By now, we are quite familiar with setting ROS parameters in launch files and reading 

their values in our nodes using the rospy.get_param()function.  But being able to 

change ROS parameters on the fly is often useful for tuning or debugging a running 

application.  In Volume 1, we occasionally used the ROS rqt_reconfigure GUI to 

change the parameters for a running node.  For example, if we are using a Kinect or 

Xtion Pro camera, we can change the camera's resolution without shutting down the 

driver by first bringing up the rqt_reconfigure GUI as follows 

$ rosrun rqt_reconfigure rqt_reconfigure 

After a short delay, the window similar to the following should appear: 

 

In the image above, we have clicked on the camera node and then selected the driver 

category.  In the right-hand panel we can then change a number of the driver's 

parameters including the resolution using the pull-down menus labeled image_mode 

and depth_mode. 

In addition to rqt_reconfigure, we can also use the dynamic reconfigure command 

line utilities to change parameters.  However, in both cases there is a catch: only nodes 

that have been programmed using the dynamic reconfigure API can be updated this way. 
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(In fact, other nodes will not even appear in the rqt_reconfigure GUI.)  Fortunately, 

most nodes in the key ROS stacks and packages such as Navigation do support dynamic 

reconfigure, but many third-party nodes do not and therefore can only be tweaked by 

editing launch files and restarting, or by using the rosparam command line tool 

followed by a node restart. 

 7.1  Adding Dynamic Parameters to your own Nodes 

Adding dynamic reconfigure support to your own nodes is not difficult and is covered  

for both C++ and Python in the step-by-step Dynamic Reconfigure Tutorials on the ROS 

Wiki.  Here we will review those concepts using the fake battery simulator as an 

example. 

 7.1.1  Creating the .cfg file 

Each parameter you want to control dynamically must be specified in the .cfg file for 

your node.  These configuration files live in the cfg subdirectory of the package 

containing your node.  The cfg file for the fake battery simulator is called  

BatterySimulator.cfg and lives in the directory rbx2_utils/cfg.  Let's take a 

look at that file now: 

1 #!/usr/bin/env python 
2 
3 PACKAGE = "rbx2_utils" 
4 
5 from dynamic_reconfigure.parameter_generator_catkin import * 6 
7 gen = ParameterGenerator() 
8 
9 gen.add("battery_runtime", int_t, 0, "Battery runtime in seconds", 30, 1, 
7200) 
10 
11 gen.add("new_battery_level", int_t, 0, "New battery level", 100, 0, 100) 

12 
13 exit(gen.generate(PACKAGE, "battery_simulator", "BatterySimulator")) 

As you can see, the file is fairly simple.  First we set the PACKAGE variable to the 

package we are in.  Then we import the catkin dynamic reconfigure generator library.  

This allows us to create a ParameterGenerator() object and add a couple of integer 

parameters.  Line 9 adds the battery_runtime parameter with a default value of 60 

seconds and a range of 1-7200 seconds.  Line 11 adds the new_battery_level 

parameter with a default of 100 and a range of 0-100.  The general form of the add() 

function is: 

gen.add("name", type, level, "description", default, min, max) 

where the fields are: 

• name - the name of the parameter in quotations 
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• type - the type of value stored, and can be any of int_t, double_t, str_t, or 
bool_t 

• level - a bitmask which will later be passed to the dynamic reconfigure callback. 

When the callback is called all of the level values for parameters that have been 

changed are ORed together and the resulting value is passed to the callback. 

This can be used to organize parameters into groups such as those that control 

sensors that must be shutdown a restarted when a parameter is changed.  See 

this tutorial for an example. 

• description - string which describes the parameter 

• default - the default value 

• min - the min value (optional and does not apply to string and bool types) 

• max - the max value (optional and does not apply to string and bool types) 

NOTE: the name string cannot be the value "i", "state", or "name" as discussed in this 

issue. 

The final line of the cfg file must be written carefully: 

13 exit(gen.generate(PACKAGE, "battery_simulator", "BatterySimulator")) 

The first string inside quotations should be the same as the name of the node we are 

configuring but without the file extension.  The second string inside quotations must be 

the name of the cfg file itself without the .cfg extension. 

 7.1.2  Making the .cfg file executable 

Once the cfg file is created, it must be made executable using the following commands: 

$ roscd rbx2_utils/cfg 
$ chmod a+x BatterySimulator.cfg 

 7.1.3  Configuring the CMakeLists.txt file 

Any package that contains dynamically configurable nodes must have a few 

configuration lines added to the package's CMakeLists.txt file.  These lines cause 

catkin_make to run the cfg file that generates the required runtime code.  For the 

BatterySimulator.cfg file to be run when building the rbx2_utils package, the 

following lines would have to appear in the CMakeLists.txt file: 

1 cmake_minimum_required(VERSION 2.8.3) 
2 
3 project(rbx2_utils) 
4 
5 find_package(catkin REQUIRED COMPONENTS dynamic_reconfigure) 
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6 
7 generate_dynamic_reconfigure_options( 
8 cfg/BatterySimulator.cfg 
9 cfg/Pub3DTarget.cfg 
10 ) 
11 
12 catkin_package(DEPENDS CATKIN DEPENDS dynamic_reconfigure) 

The find_package() macro ensures that we include the dynamic_reconfigure 

package and all its supporting dependencies.  The macro  

generate_dynamic_reconfigure_options() takes the paths to all the cfg files  

(relative to the package directory) that we want to build.   Here we list the  

BatterySimulator.cfg file we have been discussing as well as second cfg file 

(Pub3DTarget.cfg) that we will use for another node in later chapters. 

Finally, we include the dynamic_reconfigure package in the catkin_package() 

macro. 

 7.1.4  Building the package 

After adding a cfg file or making changes to an existing file, run catkin_make as 

usual: 

 

 7.2  Adding Dynamic Reconfigure Capability to the Battery Simulator 

Node 

Recall that the battery simulator script battery_simulator.py can be found in the 

directory rbx2_utils/nodes.  Let's take a more detailed look at that script now. 

Link to source: battery_simulator.py 

$ cd ~/catkin_ws 
$ catkin_make 
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1 #!/usr/bin/env python 
2 
3 import rospy 
4 from diagnostic_msgs.msg import * 
5 from std_msgs.msg import Float32 
6 from rbx2_msgs.srv import * 
7 import dynamic_reconfigure.server 
8 from rbx2_utils.cfg import BatterySimulatorConfig 9 import thread 
10 
11 class BatterySimulator(): 
12 def __init__(self): 
13 rospy.init_node("battery_simulator") 
14         
15 # The rate at which to publish the battery level 
16 self.rate = rospy.get_param("~rate", 1) 
17         
18 # Convert to a ROS rate 
19 r = rospy.Rate(self.rate) 
20         
21 # The battery runtime in seconds 
22 self.battery_runtime = rospy.get_param("~battery_runtime", 30) # 

seconds 23         
24 # The intial battery level - 100 is considered full charge 
25 self.initial_battery_level = rospy.get_param("~initial_battery_level", 100) 

26         
27 # Error battery level for diagnostics 
28 self.error_battery_level = rospy.get_param("~error_battery_level", 

20) 
29         
30 # Warn battery level for diagnostics 
31 self.warn_battery_level = rospy.get_param("~warn_battery_level", 

50)   
32         
33        # Initialize the current level variable to the startup level 34        

self.current_battery_level = self.initial_battery_level 
35         
36        # Initialize the new level variable to the startup level 37        

self.new_battery_level = self.initial_battery_level 
38         
39 # The step sized used to decrease the battery level on each publishing loop 
40 self.battery_step = float(self.initial_battery_level) / self.rate / 
self.battery_runtime 
41 
42 # Reserve a thread lock 
43 self.mutex = thread.allocate_lock() 
44         
45 # Create the battery level publisher 
46 battery_level_pub = rospy.Publisher("battery_level", Float32) 
47         
48        # A service to maually set the battery level 
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, SetBatteryLevel, 
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, DiagnosticArray) 

# Create a dynamic_reconfigure server and set a callback function 
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dyn_server = dynamic_reconfigure.server.Server(BatterySimulatorConfig, 
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"Publishing simulated battery level with a runtime of " 
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# Set the diagnostics status level based on the current battery level 
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.warn_battery_level: 

            else: 
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# Add the raw battery level to the diagnostics message 
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.current_battery_level) 
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.current_battery_level - 
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, config, level): 
'battery_runtime']: 

'battery_runtime'] 
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.battery_runtime 

'new_battery_level']: 
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'new_battery_level'] 

.new_battery_level 

Since much of the script uses already familiar concepts, let's focus on the lines related to 

dynamic reconfigure. 
7 import dynamic_reconfigure.server 
8 from rbx2_utils.cfg import BatterySimulatorConfig 

First we import the dynamic reconfigure server library as well as the config file for the 

battery simulator itself.  Notice that this BatterySimularConfig object was created 

by catkin_make from our .cfg file. 

9 # Create a dynamic_reconfigure server and set a callback function 
10 dyn_server = dynamic_reconfigure.server.Server(BatterySimulatorConfig, 

self.dynamic_reconfigure_callback) 

Here we create the dynamic reconfigure server object that will service requests of type 

BatterySimulatorConfig and we set the callback function to 

self.dynamic_reconfigure_callback() that will be described next. 

92 def dynamic_reconfigure_callback(self, config, level): 
93 if self.battery_runtime != config['battery_runtime']: 
94 self.battery_runtime = config['battery_runtime'] 
95 self.battery_step = 100.0 / self.rate / self.battery_runtime 
96             
97 if self.new_battery_level != config['new_battery_level']: 
98 self.new_battery_level = config['new_battery_level'] 
99 self.mutex.acquire() 
100 self.current_battery_level = self.new_battery_level 
101 self.mutex.release() 
102                     
103        return config 

The dynamic reconfigure callback automatically receives two arguments: the config 

argument that contains the names and values of the parameters being passed by the 

requesting client (e.g. rqt_reconfigure) and the level argument which we won't 

use here.  The config argument is a dictionary mapping parameter names to values.  In 

the case of our battery simulator, the BatterySimulator.cfg file defines two 
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configurable parameters, battery_runtime and new_battery_level, so these 

names will be the keys of the config dictionary. 

On Line 93 above we compare the current battery_runtime to the value passed in 

through the config argument and if they differ, we update the value in the script. 

Similarly, in Line 97, we do the same with the new_battery_level, although this 

time we have to acquire a lock since the script value is also modified by the main loop 

that decreases its value on every "tick" of the clock. 

And that's pretty much all there is to it.  Our battery simulator node can now be 

configured on the fly using rqt_reconfigure or any other node that sends a client 

request to update its parameters. 

 7.3  Adding Dynamic Reconfigure Client Support to a ROS Node 

In the previous section, we showed how to add dynamically configurable parameters to 

the battery simulator node.  To do this, we used the dynamic reconfigure server library.   

Running the node as a dynamic reconfigure server enables it to accept requests to 

change parameters from client nodes such as rqt_reconfigure.  However, 

occasionally, you might want one of your own nodes to act as a client and request 

parameter changes in other nodes,  Alternatively, you might want a node to simply know 

when another node's parameters have been changed and act accordingly.  While not as 

common as setting up a node as a dynamic configure server, let's take a quick look at 

how it can be done. 

Our demo script is called dyna_client.py and can be found in the 

rbx2_utils/nodes directory.  This node connects to the battery simulator and sets the 

battery level alternately between 100 and 0 every 10 seconds.  While not the most 

useful example, it at least illustrates the process.  Here is the full script. 

Link to source: dyna_client.py 

1 #!/usr/bin/env python 
2 
3 import rospy 
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4 import dynamic_reconfigure.client 
5 
6 class DynaClient(): 
7 def __init__(self): 
8 rospy.init_node("dynamic_client") 
9         
10        rospy.loginfo("Connecting to battery simulator node...") 
11     
12        client = dynamic_reconfigure.client.Client("battery_simulator", 
timeout=30, config_callback=self.callback)     
13     
14        r = rospy.Rate(0.1) 
15         
16        charge = True 
17         
18 while not 

rospy.is_shutdown(): 
19 if charge: 20                

level = 100 21            

else: 
22                level = 0 
23                 
24            charge = not charge 
25                 
26            client.update_configuration({"new_battery_level": level}) 
27             
28            r.sleep() 
29 
30 def callback(self, config): 
31 rospy.loginfo("Battery Simulator config set to: " + 
str(config['new_battery_level'])) 
32 
33 
34 if __name__ == "__main__": 

35    DynaClient() 

Let's now look at the key lines. 

4 import dynamic_reconfigure.client 

First we import the dynamic configure client library rather than the server library. 

12 client = dynamic_reconfigure.client.Client("battery_simulator", 

timeout=30, config_callback=self.callback)  

Here we create a client connection to the battery simulator node, set the timeout to 30 

seconds, and assign a callback function defined below.  Note that the callback function 

will be called whenever the parameters of the battery simulator node are changed, even 

by another node such as rqt_reconfigure.  This allows the dyna_client node to 

monitor parameter changes in the battery simulator node and adjust its own behavior if 

desired. 

13 r = rospy.Rate(0.1) 

This line sets the rate for our main loop to 0.1 Hz or once cycle per 10 seconds. 
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16        charge = True 
17         
18 while not 

rospy.is_shutdown(): 
19 if charge: 20                

level = 100 21            

else: 
22                level = 0 
23                 
24            charge = not charge 
25                 
26            client.update_configuration({"new_battery_level": level}) 
27             
28            r.sleep() 

We use the charge variable to alternate between a battery level of of 100 and 0.  We 

then enter the main loop and run the client.update_configuration() function to 

set the battery simulator's new_battery_level parameter to either 100 or 0 

depending on the value of charge.  Note how the parameter name and value are  

specified as a Python dictionary.  If we wanted to change both the 

new_battery_level and battery_runtime parameters at the same time, the update 

line would look like this: 

 client.update_configuration({"new_battery_level": level, "battery_runtime": 
runtime}) 

where runtime would hold the new runtime value. 

Finally, let's look at the client callback function: 

30    def callback(self, config): 
30        rospy.loginfo("Battery Simulator config set to: " + 
str(config['new_battery_level'])) 

The dynamic configure client callback function automatically receives the current 

parameter configuration as an argument that we have named config above.  This 

argument is a dictionary of values and we can pull out the current value of any 

parameter by name.  In Line 30 above, we simply display the value of the 

new_battery_level parameter in the terminal window. 

To see the script in action, first fire up the battery simulator node; 

$ roslaunch rbx2_utils battery_simulator.launch 

Next, run the dyna_client.py node: 

$ rosrun rbx2_utils dyna_client.py 



 

 Dynamic Reconfigure - 225 

If you monitor the dyna_client.py terminal window, you will see the output from the 

rospy.loginfo() command above every 10 seconds and the value of the 

new_battery_level parameter will alternate between 100 and 0.  To verify that the 

battery simulator is actually responding to the new battery level, open another terminal 

and monitor the battery level itself as published on the /battery_level topic: 

$ rostopic echo /battery_level  

Here you should see the battery level count down as usual starting at 100 but every 10 

seconds it will jump ether to 0 or back to 100. 

Finally, bring up rqt_reconfigure and change the new_battery_level parameter 

using the GUI.  Back in the dyna_client.py window, you should see the output from 

the callback function both every 10 seconds from its own action as well as any time you 

change the value using rqt_reconfigure. 

 7.4  Dynamic Reconfigure from the Command Line 

It is also possible to change the value of a dynamic parameter from the command line as 

detailed on the ROS Wiki.  The main command is dynaparam that takes a number of 

subcommands as follows: 

• dynparam list : list currently running nodes that are dynamically 

configurable 

• dynparam get : get node configuration 

• dynparam set : configure node 

• dynparam set_from_parameters : copy configuration from parameter 

server 

• dynparam dump : dump configuration to file 

• dynparam load : load configuration from file To run any of these commands, 

use the syntax: 

$ rosrun dynamic_reconfigure dynparam COMMAND 

For example, to set the resolution of a Kinect or Xtion Pro depth camera to 640x480 

(parameter/value image_mode=2), and assuming the camera node is running as 

/camera/driver, you would use the command: 



 

 Dynamic Reconfigure - 226 

$ rosrun dynamic_reconfigure dynparam set /camera/driver image_mode 2 

And to set the depth mode similarly: 

$ rosrun dynamic_reconfigure dynparam set /camera/driver depth_mode 2 

The dump and load commands are useful if you have spent some time tweaking a set of 

parameters using rqt_reconfigure or another method and want to save those 

changes to a file that can be loaded at a later time.  To save the current configuration of a 

node called my_node to a file called my_node.yaml, use the command: 

$ rosrun dynamic_reconfigure dynparam dump /my_node my_node.yaml 

Then to load this configuration at a later time, run the command: 

$ rosrun dynamic_reconfigure dynparam load /my_node my_node.yaml 

You can also load previously saved parameters by way of a launch file like this: 

<launch> 
   <node pkg="dynamic_reconfigure" name="dynaparam" 
type="dynaparam"  
command="load" file="$(find my_package)/my_node.yaml" /> 
</launch> 

The <node> line above will load the dynamic parameters from the file my_node.yaml 

located in the package my_package.  Of course, you can have other nodes launched in 

the same launch file. 
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 8.  MULTIPLEXING TOPICS WITH MUX & YOCS 

In the chapter on ROS Diagnostics, we programmed a node  

(monitor_dynamixels.py) that can disable one or more Dynamixel servos if they 

get too hot.  Other nodes can then attempt to control the servos but their requests will be 

ignored by the arbotix driver.  However, not all hardware controllers provide this 

level of control.  Furthermore, there may be other reasons why we want to control 

access to a shared resource that requires a more flexible approach. 

Suppose for example that we want the robot base controller to always give highest 

priority to manual input such as a joystick.  Other nodes such as move_base might be 

attempting to control the base at the same time, but the user should always be able to 

override the input using manual control.  Rather than build this kind of control override 

into the base driver itself, we can use the ROS mux utility that is part of the 

topic_tools meta package. 

The mux node enables us to multiplex several input topics into one output topic.  Only 

one input at a time is passed through to the output.  Services are provided for selecting 

the active input as well as for adding and deleting input topics as we shall describe later. 

Note that even without multiplexing, one can control a ROS base controller using 

multiple inputs simultaneously.  The problem is that all such inputs will typically 

publish their Twist messages on the same /cmd_vel topic.  The result is jerky motion 

of the robot as it alternately responds to one Twist message or another from the 

various sources.  The mux utility gets around this problem by allowing only one input 

through at any given time. 

In the case of our base controller example, let's call the navigation input topic 

move_base_cmd_vel and the joystick input topic joystick_cmd_vel.  Let the 

output topic be cmd_vel.  The following command would then set up our multiplexer: 

$ rosrun topic_tools mux cmd_vel move_base_cmd_vel joystick_cmd_vel 
mux:=mux_cmd_vel 

Here we run the mux node from the topic_tools package with the first argument 

specifying the output topic and the next two arguments specifying the two input topics.  

The last argument above gives the mux node a unique name and determines the 

namespace for the service and topic names as we will see later on. 

Note that at startup, the first input topic on the command line is selected.  So if we were 

to execute the command above, the node named mux_cmd_vel would be initially 
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listening on the topic move_base_cmd_vel for messages that it would then pass on to 

the output cmd_vel topic. 

 8.1  Configuring Launch Files to Use mux Topics 

So far so good, but how do all of these topics and messages actually end up controlling 

the robot base?  Up until now, we have assumed that the robot base controller is 

listening for Twist messages on the /cmd_vel topic.  With the above mux node 

running, we could still control the base that way: by publishing Twist messages 

directly to the /cmd_vel topic.  However, to implement the multiplexing feature of the 

mux node, we should configure our navigation controller (e.g. move_base) to publish 

its Twist messages on the topic move_base_cmd_vel and the joystick teleop node to 

publish on the topic  joystick_cmd_vel.  This way, neither node is publishing 

directly on the traditional /cmd_vel topic; instead, the mux node gets to decided which 

input will be passed along to /cmd_vel. 

An example of how to do this is included in the two launch files 

mux_fake_move_base.launch and mux_joystick_teleop.launch found in the 

rbx2_nav/launch directory.  Let's look at mux_fake_move_base.launch first: 

<launch> 
  <node pkg="move_base" type="move_base" respawn="false" name="move_base"  
clear_params="true" output="screen"> 
    <remap from="cmd_vel" to="move_base_cmd_vel" /> 
    <rosparam file="$(find rbx2_nav)/config/fake/costmap_common_params.yaml" 
command="load" ns="global_costmap" /> 
    <rosparam file="$(find rbx2_nav)/config/fake/costmap_common_params.yaml" 
command="load" ns="local_costmap" /> 
    <rosparam file="$(find rbx2_nav)/config/fake/local_costmap_params.yaml" 
command="load" /> 
    <rosparam file="$(find rbx2_nav)/config/fake/global_costmap_params.yaml" 
command="load" /> 
    <rosparam file="$(find rbx2_nav)/config/fake/base_local_planner_params.yaml" 
command="load" /> 
  </node> 
</launch> 

The key line is highlighted in bold above.  This line simply remaps the cmd_vel topic 

that move_base normally publishes on to the move_base_cmd_vel topic.  That's all 

there is to it.  The mux_joystick_teleop.launch file uses a similar remapping: 

<launch> 
  <!--- Teleop Joystick --> 
  <node pkg="turtlebot_teleop" type="turtlebot_teleop_joy" 
name="turtlebot_teleop_joystick" output="screen"> 
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    <remap from="turtlebot_teleop_joystick/cmd_vel" to="joystick_cmd_vel" /> 
    <param name="scale_angular" value="1.5"/> 
    <param name="scale_linear" value="0.3"/> 
    <param name="axis_deadman" value="7"/> 
  </node> 

  <node pkg="joy" type="joy_node" name="joystick" output="screen" /> 
</launch> 

Once again, the highlighted line provides the remapping, this time from 

turtlebot_teleop_joystick_cmd_vel that is used by default by the 

turtlebot_teleop_joy node we are using to the topic joystick_cmd_vel that we 

will use with our mux node.  (We could have just used the topic name  

turtlebot_teleop_joystick_cmd_vel directly with our mux node but we chose 

joystick_cmd_vel to be more generic and so we need to remap it here.) 

 8.2  Testing mux with the Fake TurtleBot 

To try it all out, first launch the fake TurtleBot as we did in Volume 1: 

$ roslaunch rbx1_bringup fake_turtlebot.launch 

Next, run the mux_fake_move_base_blank_map.launch file.  This file includes the 

mux_fake_move_base.launch file described above but also brings up a blank map: 

$ roslaunch rbx2_nav mux_fake_move_base_blank_map.launch 

Assuming you have a joystick attached to your computer, bring up the mux joystick 

node: 

$ roslaunch rbx2_nav mux_joystick_teleop.launch 

Finally, bring up RViz with a suitable configuration file: 

$ rosrun rviz rviz -d `rospack find rbx2_nav`/config/nav.rviz 

The first thing you will notice is that the fake TurtleBot does not respond to any control 

input—neither the joystick nor by setting 2D Nav goals in RViz.  That is because the 

ArbotiX base controller we are using for the fake TurtleBot is listening on the  

/cmd_vel topic for Twist messages but all of our control inputs are publishing on 

their own topics.  So now let's run the mux node described earlier: 
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$ rosrun topic_tools mux cmd_vel move_base_cmd_vel joystick_cmd_vel 
mux:=mux_cmd_vel 

And you should see the message: 

[ INFO] [1395796224.736609630]: advertising  

on the terminal.  Since the first input topic listed on the mux command line above is 

move_base_cmd_vel and since this is the topic used by our 

mux_fake_move_base.launch file, you should now be able to control the fake 

TurtleBot by setting 2D navigation goals in RViz with the mouse.  However, at this 

point, the joystick should not have any effect on the robot's motion.  Let's turn to that 

next. 

 8.3  Switching Inputs using mux Services 

Referring back to the mux Wiki page, we see that a mux node defines three services: 

• mux/select - Select an input topic to output, or __none to turn off output 

• mux/add – Add a new input topic 

• mux/delete – Delete an input topic 

The one we are likely to use the most is the select service for selecting which input 

topic currently has control.  Let's select the joystick as the control input.  Open another 

terminal and run the command: 

$ rosservice call mux_cmd_vel/select joystick_cmd_vel 

Notice how the select service name reflects the name of the mux node we started earlier, 

in this case mux_cmd_vel.  The output on the terminal should be: prev_topic: 

/move_base_cmd_vel 

which simply reflects the previous control topic. 

You should now be able to control the fake TurtleBot with the joystick.  At the same 

time, you will no longer be able to move the robot by setting navigation goals in RViz. 
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To go back to navigation control using RViz and move_base, run the service call: 

$ rosservice call mux_cmd_vel/select move_base_cmd_vel 

Now the joystick should no longer work to control the robot but setting navigation goals 

in RViz will. 

 8.4  A ROS Node to Prioritize mux Inputs 

Suppose we'd like to automate the switching of control inputs such that the joystick 

takes priority over move_base.  One way to do this can be found in the node 

select_cmd_vel.py in the rbx2_nav/nodes directory.  Our overall strategy is to 

subscribe to each of the input topics and then use the mux select service to select the 

control input based on the priorities we have set. 

Before looking at the code, let's try it out.  Make sure you have all the same launch files 

running as in the previous section, as well as the mux node for multiplexing the joystick 

and move_base inputs.  Then run our new node: 

$ rosrun rbx2_nav select_cmd_vel.py 

[INFO] [WallTime: 1395841719.884079] Waiting for mux select service...  
[INFO] [WallTime: 1395841719.887139] Connected to mux select service.  
[INFO] [WallTime: 1395841719.887343] Ready for input.  

Now give the robot a navigation goal using RViz and pick a goal location far away 

from the robot so it takes some time to get there.  As the robot is moving toward the 

goal, override its motion with the joystick.  You should find the robot reacts smoothly to 

your joystick input.  As soon as you release the dead man button on the joystick, the 

robot should head back toward the navigation goal. 

Let's now look at the select_cmd_vel.py script. 

Link to source: select_cmd_vel.py  

1 #!/usr/bin/env python 
2 
3 import rospy 
4 from geometry_msgs.msg import Twist 
5 from topic_tools.srv import MuxSelect 
6 import thread 
7 
8 class SelectCmdVel: 
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9 def __init__(self): 
10 rospy.init_node("select_cmd_vel") 
11         
12 # The rate at which to update the input selection 
13 rate = rospy.get_param('~rate', 5) 
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14         
15 # Convert to a ROS rate 
16 r = rospy.Rate(rate) 
17         
18 # Get a lock for updating the selected cmd_vel input 
19 self.lock = thread.allocate_lock() 
20         
21 # Set the default input control 
22 self.move_base = True 
23 self.joystick = False 
24         
25 # Track the last input control 
26 self.last_joystick = self.joystick 
27 self.last_move_base = self.move_base 
28         
29 # Subscribe to the control topics and set a callback for each 
30 rospy.Subscriber('joystick_cmd_vel', Twist, self.joystick_cb) 
31 rospy.Subscriber('move_base_cmd_vel', Twist, self.move_base_cb) 
32         
33 # Wait for the mux select service 
34 rospy.loginfo("Waiting for mux select service...") 
35 rospy.wait_for_service('mux_cmd_vel/select', 60) 36  
37 # Create a proxy for the mux select service        
38 mux_select = rospy.ServiceProxy('mux_cmd_vel/select', MuxSelect) 
39         
40        rospy.loginfo("Connected to mux select service.") 
41         
42        rospy.loginfo("Ready for input.") 
43         
44        # Main loop to switch inputs if user move joystick 45        

while not rospy.is_shutdown(): 
46 if self.joystick and self.joystick != self.last_joystick: 
47 mux_select('joystick_cmd_vel') 
48 elif self.move_base and self.move_base != self.last_move_base: 
49 mux_select('move_base_cmd_vel') 50 
51 self.last_joystick = self.joystick 
52 self.last_move_base = self.move_base 
53             
54            r.sleep() 
55 
56    # If the joystick is moved, get the message here 57    

def joystick_cb(self, msg): 
58 self.lock.acquire() 
59 self.joystick = True 
60 self.move_base = False          
61 self.lock.release() 
62     
63    # If move_base is active, get the message here 64    

def move_base_cb(self, msg): 
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65 self.lock.acquire() 
66 self.joystick = False 
67 self.move_base = True          
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68            self.lock.release() 
69     
70 if __name__ == '__main__': 
71 SelectCmdVel() 
72 rospy.spin() 

Let's break this down line by line: 
4 from geometry_msgs.msg import Twist 
5 from topic_tools.srv import MuxSelect 
6 import thread 

Near the top of the script we first import the Twist message type and the MuxSelect 

service type.  We also import the thread library as we will need to lock our callbacks. 

19        self.lock = thread.allocate_lock() 

Here we create a lock to use later on in our subscriber callback functions. 

21 # Set the default input control 
22 self.move_base = True 
23 self.joystick = False 
24         
25 # Track the last input control 
26 self.last_joystick = self.joystick 
27 self.last_move_base = self.move_base 

We use a handful of variables to set the initial control mode as well as to track the last 

control mode used. 

29 # Subscribe to the control topics and set a callback for each 
30 rospy.Subscriber('joystick_cmd_vel', Twist, self.joystick_cb) 31        

rospy.Subscriber('move_base_cmd_vel', Twist, self.move_base_cb) 

Here we subscribe to the two cmd_vel topics used with our mux node, one for the 

joystick and one for move_base.  We also set the callback function to point to functions 

defined later in the script. 

33 # Wait for the mux select service 
34 rospy.loginfo("Waiting for mux select service...") 
35 rospy.wait_for_service('mux_cmd_vel/select', 60) 36  
37 # Create a proxy for the mux select service        
38 mux_select = rospy.ServiceProxy('mux_cmd_vel/select', MuxSelect) 

Before connecting to the mux select service, we wait to see if it is alive.  Then we 

assign a ServiceProxy to the variable mux_select to be used later. 



 

 Multiplexing Topics with mux & yocs - 236 

56    # If the joystick is moved, get the message here 57    

def joystick_cb(self, msg): 
58 self.lock.acquire() 
59 self.joystick = True 
60 self.move_base = False          
61 self.lock.release() 
62     
63    # If move_base is active, get the message here 

64    def move_base_cb(self, msg): 65            

self.lock.acquire() 
66 self.joystick = False 
67 self.move_base = True          
68 self.lock.release() 

Jumping down the script a bit, these are the two callback functions to handle messages 

received on the joystick_cmd_vel topic and the move_base_cmd_vel topic.  Since 

ROS subscriber callbacks run in separate threads, we need to use the lock created 

earlier before setting the self.joystick and self.move_base flags. 

44        # Main loop to switch inputs if user move joystick 45        

while not rospy.is_shutdown(): 
46 if self.joystick and self.joystick != self.last_joystick: 
47 mux_select('joystick_cmd_vel') 
48 elif self.move_base and self.move_base != self.last_move_base: 
49 mux_select('move_base_cmd_vel') 50 
51 self.last_joystick = self.joystick 
52 self.last_move_base = self.move_base 
53             
54            r.sleep() 

Finally, we jump back to the main loop where the actual input selection is done.  Since 

we want the joystick to take priority, we check it first.  If the self.joystick flag is 

True (which means joystick input was detected in the joystick_cb function 

described above), we use the mux_select service proxy to set the input control topic 

to joystick_cmd_vel.  Otherwise, we give control to the move_base_cmd_vel 

topic. 

 8.5  The YOCS Controller from Yujin Robot 

The folks at Yujin Robot, makers of the Kobuki robot (a.k.a TurtleBot 2), have created a 

very useful mux-based controller that does everything our select_cmd_vel.py node 

does but makes it easy to add any number of control inputs and set their priorities by 

using a simple YAML configuration file.  The package is called yocs_cmd_vel_mux 

and you can learn more about how it works on the Kobuki Control Systems Wiki page. 
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The yocs_cmd_vel_mux package uses a ROS nodelet (called CmdVelMuxNodelet) 

to handle the mux switching between inputs together with a configuration file to specify 

input topics, their priorities, and the final output topic.  The configuration file that 

would reproduce the functionality of our select_cmd_vel.py node looks like this: 
subscribers: 
- name:        "Joystick control"    
topic:       "/joystick_cmd_vel"     
timeout:     0.2     priority:    1 
     
- name:        "Navigation stack"    
topic:       "/move_base_cmd_vel" 
    timeout:     0.2     
priority:    0 
     
publisher:       "output/cmd_vel" 

Here we see that our two input topics are listed under the subscribers section.  Each 

subscriber is given a descriptive name, the topic on which it is listening for 

commands, a timeout (in seconds) and a priority where larger numbers have 

higher priority and must be unique—i.e., two or more subscribers cannot have the same 

priority.  The output topic is specified by the publisher parameter and in this case is 

set to output/cmd_vel.  Note that since the output topic does not have a leading "/", 

it will be prepended with the name of the nodelet namespace which is /cmd_vel_mux 

so that the full output topic name is /cmd_vel_mux/output/cmd_vel. 

This configuration can be found in the file yocs_cmd_vel.yaml in the 

rbx2_nav/config directory and will be loaded by the launch file we turn to next. 

To run the CmdVelMuxNodelet, we use the launch file yocs_cmd_vel.launch in 

the rbx2_nav/launch directory as shown below: 
<launch> 
  <arg name="robot_name" default="turtlebot"/> 

  <node pkg="nodelet" type="nodelet" name="$(arg robot_name)_nodelet_manager" 
args="manager"/> 

  <node pkg="nodelet" type="nodelet" name="cmd_vel_mux"         
args="load yocs_cmd_vel_mux/CmdVelMuxNodelet $(arg  
robot_name)_nodelet_manager"> 
    <param name="yaml_cfg_file" value="$(find  
rbx2_nav)/config/yocs_cmd_vel.yaml"/> 
    <remap from="cmd_vel_mux/output/cmd_vel" to="/cmd_vel"/> 
  </node> 
</launch> 
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We begin the launch file by using an argument to assign a default name for the robot we 

are controlling.  This can be essentially anything you like.  We then load the overall 

nodelet manager from the ROS nodelet package before we can load the  

CmdVelMuxNodelet itself.  Next we load the CmdVelMuxNodelet nodelet and read 

in the yocs_cmd_vel.yaml configuration file.  Finally, we remap the output topic 

/cmd_vel_mux/output/cmd_vel to the standard /cmd_vel topic that our fake 

TurtleBot subscribes to for motion commands. 

To test it all out, terminate any nodes and launch files from the previous two sections 

and start from scratch as follows. 

Bring up the fake TurtleBot: 

$ roslaunch rbx1_bringup fake_turtlebot.launch 

Next, run the mux_fake_move_base_blank_map.launch file: 

$ roslaunch rbx2_nav mux_fake_move_base_blank_map.launch 

Assuming you have a joystick attached to your computer, bring up the mux joystick 

node: 

$ roslaunch rbx2_nav mux_joystick_teleop.launch 

Finally, bring up RViz with a suitable configuration file: 

$ rosrun rviz rviz -d `rospack find rbx2_nav`/config/nav.rviz 

We can now run the yocs_cmd_vel.launch file.  This takes the place of both the mux 

node we ran earlier and our select_cmd_vel.py node: 

$ roslaunch rbx2_nav yocs_cmd_vel.launch 

The output should look something like this: 

process[turtlebot_nodelet_manager-1]: started with pid [8473] 
process[cmd_vel_mux-2]: started with pid [8474]  

Here we see that the nodelet manager is started followed by the cmd_vel_mux nodelet. 

You should now be able to control the fake robot with the joystick as well as by setting 

2D Nav Goals in RViz with your mouse.  If you first set a 2D Nav Goal, you should 
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then be able to override the motion of the robot at any time using the joystick since we 

gave the joystick higher priority than move_base in the yocs_cmd_vel.yaml config 

file.  Once you release the joystick control, the robot should continue on to the last 2D 

Nav Goal. 

 8.5.1  Adding input sources 

Configuring the yocs_cmd_vel controller to manage additional input sources is very 

easy since all we need to do is add an appropriate section to the configuration file and 

run the node that publishes the new input messages.  For example, the following 

configuration includes an input for keyboard teleop control: 
subscribers: 
- name:        "Joystick control"    
topic:       "/joystick_cmd_vel" 
    timeout:     0.2     
priority:    2 
     
- name:        "Navigation stack"    
topic:       "/move_base_cmd_vel"     
timeout:     0.2     priority:    1 
     
- name:        "Keyboard control"    
topic:       "/keyboard_cmd_vel" 
    timeout:     1.0     
priority:    0 
     
publisher:       "output/cmd_vel" 

Here we assume that the keyboard teleop node is publishing Twist commands on the 

/keyboard_cmd_vel topic.  We have also given it the lowest priority.  This 

configuration can be found in the file yocs_cmd_vel_with_keyboard.yaml in the 

rbx2_nav/config directory.  You can try it out by terminating 

yocs_cmd_vel.launch file from the previous section, then running the following two 

commands: 

 
Bring the keyboard teleop terminal to the foreground and try controlling the fake  

TurtleBot with key commands.  Notice that if you set a 2D Nav Goal in RViz you can 

override the robot's motion with the joystick but not the keyboard.  This is because we 

gave the joystick a higher priority than move_base in the yocs config file but the 

keyboard was given a lower priority. 

$ roslaunch rbx2_nav mux_keyboard_teleop.launch 

$ roslaunch rbx2_nav yocs_cmd_vel_with_keyboard.launch 
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NOTE: Most keyboard teleop nodes (including the TurtleBot teleop node we are using 

in the mux_keyboard_teleop.launch file) continue to publish an empty Twist 

message even when all keys have been released.  On the one hand, this is a safety 

feature since it means the robot will stop if the user is not pressing a key.  On the other 

hand, it does not play well with the yocs_cmd_vel nodelet since unless the keyboard 

input is put last in the priority list, it will always override all other inputs below it. 
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 9.  HEAD TRACKING IN 3D 

In Volume 1 we learned how to 

program a head tracking node that 

moves the camera to follow a face or 

any other target published on the  

/roi topic using a  

RegionOfInterest message type.  

In those cases, the target was 

represented as a ROS  

RegionOfInterest message that  

defines a rectangular region typically 

embedded in the plane of the camera 

view surrounding the object to be 

tracked. 

However, the real world is three 

dimensional and since depth 

cameras like the Kinect are relatively inexpensive, there is little reason not to take 

advantage of the 3rd dimension.  What's more, ROS itself was built from the ground up 

to work in all three dimensions.  In particular, the tf library has no trouble transforming 

3-dimensional sensor data from one reference frame to another which takes all the pain 

out of computing how an object is space is positioned relative to the robot.  (Unless you 

are particularly good at multiplying quaternions in your head.) 

In this chapter we will add depth information to the problem of visual object tracking so 

that instead of a 2D RegionOfInterest message to represent the object, we will use a 

3D PoseStamped message.  For head tracking, we will not need the orientation 

components of this message type so we could get away with a simpler PointStamped 

message; however, since target orientation will be important when it comes to grasping 

an object in the chapter on Arm Navigation and MoveIt, we will use the more general 

PoseStamped message here too. 

A PoseStamped message can represent the location of a face or colored object, but it 

can also track other points in space such as the location of gripper on the robot's arm that 

might not even be in view of the camera.  (Recall that we always know the location of 

the gripper or other parts of the robot relative to the camera by way of the robot's URDF 

model and the robot_state_publisher.) 

Our challenge is to project this 3D pose onto the camera plane so that we know how to 

move the camera to face the target.  Before looking at the code, we will run a couple of 
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examples using the new head tracker.  But first, let's create a node that publishes a 

fictional moving 3D point that we can use to test our tracking. 

 9.1  Tracking a Fictional 3D Target 

Before worrying about tracking a real object with a real camera, let's create a node that 

publishes a  PoseStamped message simulating a moving object so that we can test 

tracking with an imaginary target first. 

The Python script pub_3d_target.py found in the rbx2_utils/nodes directory 

does the trick.  This node simply publishes a time varying PoseStamped message 

where the x, y and z coordinates of the point vary sinusoidally.  Of course, you could 

modify the script or create your own to generate different motions of the target point.  

The script also publishes a visualization marker to indicate the location of the target so 

that we can see it in RViz. 

Let's try it out using a fake version of Pi Robot: 

$ roslaunch rbx2_bringup pi_robot_with_gripper.launch sim:=true 

Next, fire up RViz using the fake_target.rviz config file that is configured to 

display the 3D marker: 

$ rosrun rviz rviz -d `rospack find rbx2_utils`/fake_target.rviz 

Now launch the pub_3d_target.py node: 

$ roslaunch rbx2_utils pub_3d_target.launch 

You should see a yellow sphere moving in RViz in front of the robot. 

Finally, launch the head_tracker.py node in fake mode (sim:=true): 

$ roslaunch rbx2_dynamixels head_tracker.launch sim:=true 

Back in RViz, you should see the head track the motion of the yellow sphere.  You can 

change the way the sphere moves using rqt_reconfigure: 

$ rosrun rqt_reconfigure rqt_reconfigure  
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For example, setting the move_target_rate to 1 and the speed to 2.0 will cause the 

sphere to jump over larger gaps instead of moving smoothly in between. 

 9.2  Tracking a Point on the Robot 

A robot running ROS can always determine the 3D position and orientation of each of 

its links and joints.  This is made possible by the URDF model and the 

robot_state_publisher node that together keep the tf tree in sync with the robot's 

current joint states.  As a result, we can use our head tracking node to follow any part of 

the robot as it moves.  For example, if the robot is handing an object to someone, we can 

program the head to track the gripper location as the arm reaches outward toward the 

person.  It turns out that this type of head motion while giving an object to someone else 

is an important social cue in humans that signals that the receiver should reach out to 

take the object.  See for example the recent study described here. 

The position of a point on the robot can be specified relative to any convenient frame of 

reference.  To track a particular link in the robot's URDF model, we can simply use the 

coordinates (0, 0, 0) in that link's reference frame.  So to track the gripper location, the 

head should follow the point (0, 0, 0) in the gripper frame 

The script called pub_tf_frame.py in the rbx2_utils/nodes directory simply 

publishes a PoseStamped message on the target_pose topic with coordinates (0, 0, 

0) and orientation (0, 0, 0, 1) relative to the reference frame we want to track.  The 

default target frame in the script is the right_gripper_link. 
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To try it, use all the same launch files as in the previous section but Ctrl-C out of the 

pub3d_target.launch file and launch the following pub_tf_frame.launch file 

instead: 

$ roslaunch rbx2_utils pub_tf_frame.launch 

The frame we want to track is specified in the launch file by the parameter 

target_frame.  By default, this frame is set to 'right_gripper_link'. 

If the head tracker node is not already running, bring it up now: 

$ roslaunch rbx2_dynamixels head_tracker.launch sim:=true 

Back in RViz, you should see the head track rotate downward and to the right to look at 

the right gripper. 

Finally, bring up the arbotix_gui control so that we can manually move the arm: 

 

Use the slider controls on the arbotix_gui to move the arm joints.  As you move the 

sliders, the arm should move in RViz and the head will move to track the position of the 

right gripper. 

Let's now look at the code. 

Link to source: pub_tf_frame.py 

1 #!/usr/bin/env python 
2 
3 import rospy 
4 from geometry_msgs.msg import PoseStamped 
5 
6 class PubFrame(): 
7 def __init__(self): 
8 rospy.init_node('pub_tf_frame') 
9         
10 # The rate at which we publish target messages 
11 rate = rospy.get_param('~rate', 20) 
12         
13 # Convert the rate into a ROS rate 
14 r = rospy.Rate(rate) 

$ arbotix_gui 
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15         
16 # The frame we want to track 
17 target_frame = rospy.get_param('~target_frame', 'right_gripper_link') 18 
19 # The target pose publisher 
20 target_pub = rospy.Publisher('target_pose', PoseStamped) 
21         
22 # Define the target as a PoseStamped message 
23 target = PoseStamped() 
24         
25        target.header.frame_id = target_frame 
26         
27 target.pose.position.x = 0 
28 target.pose.position.y = 0 
29 target.pose.position.z = 0 
30         
31 target.pose.orientation.x = 0 
32 target.pose.orientation.y = 0 
33 target.pose.orientation.z = 0 
34 target.pose.orientation.w = 1 
35         
36        rospy.loginfo("Publishing target on frame " + str(target_frame)) 37  
38 while not rospy.is_shutdown(): 
39 # Get the current timestamp 
40 target.header.stamp = rospy.Time.now() 
41             
42 # Publish the target 
43 target_pub.publish(target)                   44 
45 r.sleep() 
46 47 if __name__ == 
'__main__': 
48 try: 
49 target = PubFrame() 
50 rospy.spin() 
51 except rospy.ROSInterruptException: 
52 rospy.loginfo("Target publisher is shut down.") 

As you can see, the script is fairly straightforward.  After reading in the publishing rate 

parameter, we get the target frame as a parameter that defaults to 

right_gripper_link and can be changed in the launch file.  Then we define a 

publisher for the target_pose topic.  We then set the PoseStamped target to be the 

origin of the target frame by giving it position coordinates (0, 0, 0) and orientation 

values (0, 0, 0, 1).  Finally, we enter a loop to publish this pose with a new timestamp on 

each cycle. 

You might be wondering, if we are publishing the same pose every time, how can the 

head tracker know that the link is actually moving.  The answer is that the head tracker 

script uses the tf transformPoint() function to lookup the latest transformation 
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between the camera frame (attached to the head) and the target_pose frame (attached 

to the right hand in this case).  So although the target coordinates are the same relative to 

the target frame, the target frame itself is moving relative to the rest of the robot. 

It is instructive to try different coordinates in the pub_tf_frame.py script.  For 

example, try target.pose.position.x = 0.1, then terminate and restart the 

pub_tf_frame.launch file and the robot should now look 10cm outward from the 

gripper link.  You can imagine that this might become useful when the robot is grasping 

a tool or other object so that the camera view can be centered on the object. 

 9.3  The 3D Head Tracking Node 

Our new head tracking node can be found in the file head_tracker.py in the 

directory rbx2_dynamixel/nodes.  This code is similar to the script we use in Volume 

1 (rbx1_dynamixels/nodes/head_tracker.py) so we will concentrate only on 

what is new.  The main difference is that we now subscribe to a topic with message type 

PoseStamped instead of a RegionOfInterest and we use a new callback function to 

compute the pan and tilt updates for the head servos.  We also include support for both 

the dynamixel_motor package and the arbotix package.  In Volume 1, we used the 

dynamixel_motor package with real servos whereas in this volume we are using the 

arbotix package.  

 9.3.1  Real or fake head tracking 

In the chapter on URDF models, we used the arbotix_python package in fake mode 

to test the movement of simulated Dynamixel servo joints.  When using the fake 

simulator for head tracking, it turns out that our speed tracking technique causes the 

head to oscillate around the target.  This is because the fake camera, servos and other 

robot components have no inertia to dampen the motion.  Consequently, we need to use 

position tracking rather than speed tracking when using the fake robot. 

Position tracking uses a fixed servo speed and aims the camera right at the target point.  

Recall that by contrast, speed tracking aims the camera ahead of the target but adjusts 

the speed to be proportional to the displacement of the target from the center of the field 

of view.  The use of position tracking with real hardware causes jerky motion of the 

servos which is why we use speed tracking instead.  However, for the fake robot, 

position tracking works fine. 

Near the top of head tracking script, you will see the following lines: 

# Are we running in fake mode? 
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FAKE = rospy.get_param('~sim', False) 
# For fake mode we use the arbotix controller package and position tracking 
if FAKE: 
    CONTROLLER_TYPE = 'arbotix' 
    TRACKER_TYPE = 'position' 
else: 
    # Specify either 'dynamixel_motor' or 'arbotix' for the controller package 
    CONTROLLER_TYPE = rospy.get_param('~controller_type', 'arbotix') 

     
    # Specify either 'speed' or 'position' for the type of tracking 
    TRACKER_TYPE = rospy.get_param('~tracker_type', 'speed') 

     

By setting the parameter sim to True in the head_tracker.launch file, we can run 

head tracking in the ArbotiX simulator using position tracking.  When using real servos, 

set this parameter to False and speed tracking will be used instead. 

Further down in the head_tracker.py script, the controller type and tracker type 

determines the callback we run on the PoseStamped target type: 
  if CONTROLLER_TYPE == 'arbotix' and TRACKER_TYPE == 'position':       
rospy.Subscriber('target_topic', PoseStamped, self.update_joint_positions) 

   else:       rospy.Subscriber('target_topic', PoseStamped, 

self.update_joint_speeds) 

As you can see, for fake head tracking (controller_type='arbotix' and 

tracker_type='position') we use the update_joint_position() callback 

whereas for real tracking we use the update_joint_speeds()callback.  Note how we 

use the generic topic name 'target_topic' which can then be remapped in the launch 

file to the specific topic that we want to track. 

 9.3.2  Projecting the target onto the camera plane 

Whether we are doing real or fake head tracking, we need to project the 3D target 

position onto the camera plane so we know how far to pan and tilt the camera.  Let's use 

the update_joint_speeds() callback to examine the process. 

The update_joint_speeds()callback looks like this: 
1 def update_joint_speeds(self, msg): 
2     # Acquire the lock 
3     self.lock.acquire() 
4 
5 

        

try: 
6         # If message is empty, return immediately 
7         if msg == PointStamped(): 
8             return 
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9         
10 # If we get this far, the target 

is visible 
11 self.target_visible = True 12 
13 # Get position component of the message 
14 target = PointStamped() 
15 target.header.frame_id = msg.header.frame_id 
16 target.point = msg.pose.position 
17                 
18 # Project the target point onto the camera link 
19 camera_target = self.tf.transformPoint(self.camera_link, target) 
20         
21 # The virtual camera image is in the y-z plane 
22 pan = -camera_target.point.y 
23 tilt = -camera_target.point.z 
24         
25        # Compute the distance to the target in the x direction 26        

distance = float(abs(camera_target.point.x)) 
27         
28        # Convert the pan and tilt values from meters to radians 29        

# Check for exceptions (NaNs) and use minimum range as fallback 30        

try: 
31            pan /= distance 32            

tilt /= distance 33        

except: 
34 pan /= 0.5 
35 tilt /= 0.5 
36                       
37        # Get the current pan and tilt position 38        

try: 
39 current_pan =  
self.joint_state.position[self.joint_state.name.index(self.head_pan_joint)] 
40 current_tilt = 
self.joint_state.position[self.joint_state.name.index(self.head_tilt_joint)] 

41        except: 
42            return 
43             
44        # Pan camera only if target displacement exceeds the threshold 45        

if abs(pan) > self.pan_threshold: 
46 # Set pan speed proportion to horizontal displacement 
47 self.pan_speed = trunc(min(self.max_joint_speed, max(self.min_joint_speed, 
self.gain_pan * abs(pan))), 2) 
48                
49 if pan > 0: 
50 self.pan_position = max(self.min_pan, current_pan - 

self.lead_target_angle) 51            else: 
52                self.pan_position = min(self.max_pan, current_pan + 

self.lead_target_angle) 53        else: 
54 self.pan_position = current_pan 
55 self.pan_speed = self.min_joint_speed 
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56         
57        # Tilt camera only if target displacement exceeds the threshold 58        

if abs(tilt) > self.tilt_threshold: 
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59 # Set tilt speed proportion to vertical displacement 
60 self.tilt_speed = trunc(min(self.max_joint_speed, max(self.min_joint_speed, 
self.gain_tilt * abs(tilt))), 2) 
61             
62 if tilt < 0: 
63 self.tilt_position = max(self.min_tilt, current_tilt - 

self.lead_target_angle) 64            else: 
65                self.tilt_position = min(self.max_tilt, current_tilt + 
self.lead_target_angle) 
66 
67 else: 
68 self.tilt_position = current_tilt 
69 self.tilt_speed = self.min_joint_speed 
70 71    finally: 
72 # Release the lock 
73 self.lock.release() 

Let's look at the key lines of the callback function.   

3         self.lock.acquire() 

First we acquire a lock at the beginning of the callback.  This is to protect the variables 

self.pan_speed, self.tilt_speed and self.target_visible which are also 

modified in our main loop. 

14 target = PointStamped() 
15 target.header.frame_id = msg.header.frame_id 
16 target.point = msg.pose.position 

Before projecting the PoseStamped message into the camera plane, we extract the 

position component since we do not require the orientation of the target for this process. 

19        camera_target = self.tf.transformPoint(self.camera_link, target) 

Here we use the transformPoint() function from the tf library to project the 

PointStamped target onto the camera frame.  (A good reference for other 

transformation functions can be found on the ROS Wiki on the page Using Python tf.) 

21 # The virtual camera image is in the y-z plane 
22 pan = -camera_target.point.y 
23 tilt = -camera_target.point.z 
24             
25 # Compute the distance to the target in the x direction 
26 distance = float(abs(camera_target.point.x)) 

Recall that the ROS camera frame uses y for the horizontal (left/right) axis and z for the 

vertical (up/down) axis.  So we initially set the pan variable opposite to the 

displacement of the target in the y direction and similarly for the tilt variable in the z 
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direction.  The camera's x axis points perpendicular to the plane of the camera and 

therefore represents the distance of the target to the camera. 

30 try: 
31 pan /= distance32             tilt /= distance 33         except: 
34 pan /= 0.5 
35 tilt /= 0.5 

  

We need to convert the pan and tilt values to angular displacements (in radians) which 

we can do by dividing each by the distance to the target.  In case the distance is zero, we 

set it to 0.5 meters which is roughly the minimum distance a Kinect or Xtion Pro can 

reliably measure. 

The rest of the script is essentially the same as the head tracking script we used in 

Volume 1 and so will not be described further here. 

In the next chapter we will make use of this new head tracker node to locate special 

patters called AR tags in 3-dimensional space. 

 9.4  Head Tracking with Real Servos 

If you have a pan-and-tilt head using Dynamixel servos, you can try out the 3D head 

tracking for real.  We will use the pi_robot_head_only.launch file that loads the 

pi_robot_head_only.yaml configuration file and runs the arbotix node to connect 

to two AX-12 Dynamixel servos that are assumed to have  hardware IDs of 1 for the pan 

servo and 2 for the tilt servo.  Use your own launch file if you already have one. 

The pi_robot_head_only.launch file loads the model of the Pi Robot without an 

arm but with a Kinect mounted on a set of pan-and-tilt servos.  We will run through two 

scenarios: the first uses the fake 3D target introduced in the previous sections.  This way 

we can test tracking even without a depth camera.  The second assumes you have a 

depth camera on top of the pan-and-tilt servos and then we will track the nearest real 

object in front of the camera. 

 9.4.1  Real servos and fake target 

We can test the functioning of the servos by publishing the fictitious 3D target we used 

earlier to give the real head something to track, even though the target will only be in the 

robot's imagination, so to speak. 

First, terminate any launch files you might already have running from previous sections. 
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Next, make sure your servos are connected and powered up, then run the 

pi_robot_head_only.launch file from the rbx2_bringup package.  Note that we 

set the sim parameter to false since we are using a real robot.  Alternatively, use your 

own startup file if you have one: 

$ roslaunch rbx2_bringup pi_robot_head_only.launch sim:=false 

port:=/dev/ttyUSB0 

The launch file assumes your USB2Dynamixel controller is on /dev/ttyUSB0 but you 

can use the port parameter as shown above to change the port if your controller has a 

different USB ID, e.g. /dev/ttyUSB1. 

If all goes well, you should eventually see the rqt_robot_monitor window appear 

displaying the status of the pan and tilt servos under the Joints category. 

Next bring up the Dynamixel monitoring node we created in the chapter on Diagnostics.  

Remember that this node helps prevent the servos from overheating by disabling all 

servos if any one of them exceeds 60 degrees C. 

$ roslaunch rbx2_diagnostics monitor_dynamixels.launch 

Fire up RViz with the fake_target.rviz config file: 

$ rosrun rviz rviz -d `rospack find rbx2_utils`/fake_target.rviz 

Now start the fake 3D target moving: 

$ roslaunch rbx2_utils pub_3d_target.launch 

The moving yellow "balloon" should appear in RViz. 

Finally, start the head tracker node, but this time with the sim parameter set to false: 

$ roslaunch rbx2_dynamixels head_tracker.launch sim:=false 

If all goes right, your pan-and-tilt head should begin tracking the imaginary balloon.  In 

the meantime, the robot's virtual head in RViz should reflect the real servo motion. 

As we did in the earlier demo, bring up rqt_reconfigure and try changing the 

motion parameters of the target: 

$ rosrun rqt_reconfigure rqt_reconfigure 
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To stop the tracking and center the servos, simply type Ctrl-C in the terminal window 

you used to launch the head tracking node. 

 9.4.2  Real servos, real target 

Assuming everything went well when tracking the fictitious target in the previous 

section, we can now try tracking a real target using a depth camera mounted to the 

panand-tilt servos.  Rather than tracking a specific type of object like a face, we will use 

a node that computes the center-of-gravity (COG) of the nearest point cloud in front of 

the camera.  We used the same technique in Volume 1 for the person follower application 

that allowed a mobile robot equipped with a depth camera to follow the nearest "blob" in 

front of the camera. 

The script that does the work is called nearest_cloud.py in the 

rbx2_vision/nodes directory and we will describe it shortly.  However, let's first 

give it a try. 

We'll assume you still have the launch files running from the previous section to connect 

to your pan-and-tilt servos.  If not, run those files now. 

Next, Ctrl-C out of the pub3d_target.launch file if it is still running.  The yellow 

sphere should stop moving in RViz. 

Next, bring up the OpenNI node for your depth camera: 

$ roslaunch rbx2_vision openni_node.launch 

Now bring up the nearest cloud node using the corresponding launch file: 

$ roslaunch rbx2_vision nearest_cloud.launch 

This launch file runs a VoxelGrid filter and two PassThrough filters to restrict the 

point cloud processing to a box in front of the camera that is 0.6  meters wide (about a 

foot on either side), extends outward to 1.0 meters (about 3 feet), and runs 0.3 meters 

(about 1 foot) below the camera and 0.15 meters (6 inches) above the camera.  This 

creates a kind of "focus of attention" for the robot so that we can track objects that are 

relatively near the camera.  The resulting point cloud is output on the topic called  

/cloud_filtered. 

Next, exit out of RViz if it is still running then fire it up again with the 

track_pointcloud.rviz config file: 
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$ rosrun rviz rviz -d `rospack find 
rbx2_vision`/config/track_pointcloud.rviz 

This configuration file includes a PointCloud2 display that is subscribed to the 

/cloud_filtered topic.  Now move your hand or some object in front of the camera 

and you should see the corresponding point cloud in RViz.  Notice how your hand or 

other object will appear and disappear as you move it in and out of the boundaries 

defined by the PassThrough filters. 

Finally, if the head tracker node is not already running, start it now with the sim 

argument set to false: 

$ roslaunch rbx2_dynamixels head_tracker.launch sim:=false 

After a brief delay, the pan-and-tilt head should begin tracking the nearest object in front 

of the camera.  Keep in mind that both the Kinect and the Xtion Pro cannot see the depth 

objects closer than about 0.5 meters (a little less than 2 feet).  Also remember that the 

nearest_cloud.launch file filters out points that are further away than 1 meter.  

(You can run rqt_reconfigure and adjust the parameters for the VoxelGrid and 

PassThrough filters on the fly, or change them in the launch file.) 

If you stand in front of the camera within the filter box and move left or right, the 

camera should track your motion.  If you move your body back beyond 1 meter from the 

camera and then extend your hand into the filter box, the head and camera should track 

your hand.  If you are in doubt about what the camera is detecting, make sure you can 

see RViz on your computer screen so you can monitor the point cloud image. 

 9.4.3  The nearest_cloud.py node and launch file 

The launch file nearest_cloud.launch, found in the rbx2_vision/launch 

directory, runs a VoxelGrid PCL nodelet and two PassThrough nodelets to filter the 

point cloud from a depth camera so that only the points within a relatively small box in 

front of the camera are retained.  This launch file is similar to the follower2.launch 

file we used in Volume 1 (and located in the rbx1_apps/launch directory) that we 

used to enable a mobile robot to follow a person moving in front of the robot's depth 

camera. 

After filtering the point cloud, the nearest_cloud.launch file runs the 

nearest_cloud.py node that then computes the center-of-gravity (COG) of the 

filtered points and publishes these coordinates as a PoseStamped message with unit 

orientation on the topic /target_pose.  Let's take a look at that script now. 
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Link to source: nearest_cloud.py 

1 #!/usr/bin/env python 
2 
3 import rospy 
4 from roslib import message 
5 from sensor_msgs import point_cloud2 
6 from sensor_msgs.msg import PointCloud2 
7 from geometry_msgs.msg import Point, PoseStamped 
8 import numpy as np 
9 
10 class NearestCloud(): 
11 def __init__(self): 
12 rospy.init_node("nearest_cloud") 
13         
14 # Define the target publisher 
15 self.target_pub = rospy.Publisher('target_pose', PoseStamped) 
16         
17        rospy.Subscriber('point_cloud', PointCloud2, self.get_nearest_cloud) 
18         
19 # Wait for the pointcloud topic to become available 
20 rospy.wait_for_message('point_cloud', PointCloud2) 
21         
22 def get_nearest_cloud(self, msg): 
23 points = list() 
24         
25 # Get all the points in the visible cloud (may be prefiltered by other 
nodes) 
26 for point in point_cloud2.read_points(msg, skip_nans=True): 
27 points.append(point[:3]) 28 
29 # Convert to a numpy array             
30 points_arr = np.float32([p for p in points]).reshape(-1, 1, 3)  
31         
32 # Compute the COG  
33 cog = np.mean(points_arr, 0) 
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34 
35        # Abort if we get an NaN in any component 36        

if np.isnan(np.sum(cog)): 
37            return 
38         
39 # Store the COG in a ROS Point object 
40 cog_point = Point() 
41 cog_point.x = cog[0][0] 
42 cog_point.y = cog[0][1] 
43 cog_point.z = cog[0][2] 
44         
45 # Give the COG a unit orientation and store as a PoseStamped message 
46 target = PoseStamped() 
47 target.header.stamp = rospy.Time.now() 
48 target.header.frame_id = msg.header.frame_id 
49 target.pose.position = cog_point 
50 target.pose.orientation.w = 1.0 
51         
52 # Publish the PoseStamped message on the /target_pose topic 
53 self.target_pub.publish(target) 
54 55 if __name__ == '__main__': 
56 try: 
57 NearestCloud() 
58 rospy.spin() 
59 except rospy.ROSInterruptException: 
60 rospy.loginfo("Nearest cloud node terminated.") 
61 

Let's now look at the key lines of the script. 
4 from roslib import message 
5 from sensor_msgs import point_cloud2 
6 from sensor_msgs.msg import PointCloud2 

To access the points in the depth cloud, we need the message class from roslib and 

the point_cloud2 library from the ROS sensor_msgs package.  We also need the 

PointCloud2 message type. 

15        self.target_pub = rospy.Publisher('target_pose', PoseStamped) 

We will publish the COG of the nearest point cloud on the topic /target_pose as a 

PoseStamped message.  This way we can use our head tracker script out of the box to 

track the cloud. 

17        rospy.Subscriber('point_cloud', PointCloud2, self.get_nearest_cloud) 

Next we subscribe to the generic topic name 'point_cloud' and set the callback to the 

function get_nearest_cloud() that we will look at next.  The launch file 

nearest_cloud.launch remaps the point_cloud topic to the cloud_filtered 
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topic that is output by the chain of VoxelGrid and PassThrough filters we use to 

form the filter box. 

22 def get_nearest_cloud(self, msg): 
23 points = list() 
24         
25 # Get all the points in the visible cloud (may be prefiltered by 

other nodes) 
26 for point in point_cloud2.read_points(msg, skip_nans=True): 
27 points.append(point[:3]) 

Here we begin the callback function that fires whenever we receive a point cloud 

message on the cloud_filtered topic.  First we initialize a list called points that we  

will use to store the points in the point cloud.  Then loop through all the points in the 

incoming message using the read_points()function from the point_cloud2 library 

that we imported at the top of the script.  The first three values of each point gets 

appended to the points list.  These first three values are the x, y and z coordinates of 

the point relative to the camera depth frame. 

29 # Convert to a numpy array             
30 points_arr = np.float32([p for p in points]).reshape(-1, 1, 3)  
31         
32 # Compute the COG  
33 cog = np.mean(points_arr, 0) 34 
35        # Abort if we get an NaN in any component 

36        if np.isnan(np.sum(cog)): 37            

return 

Next we convert the points list into a numpy array so that we can quickly compute the 

COG using the numpy mean() function.  It is also a good idea to test for NaNs (not a 

value) that can some times occur in point clouds returned from depth cameras. 

39 # Store the COG in a ROS Point object 
40 cog_point = Point() 
41 cog_point.x = cog[0][0] 
42 cog_point.y = cog[0][1] 
43 cog_point.z = cog[0][2] 

To prepare the COG for publishing on the /target_pose topic, we first store the x, y 

an z values as the components of a ROS Point object. 

45 # Give the COG a unit orientation and store as a PoseStamped message 
46 target = PoseStamped() 
47 target.header.stamp = rospy.Time.now() 
48 target.header.frame_id = msg.header.frame_id 
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49 target.pose.position = cog_point 
50 target.pose.orientation.w = 1.0 

We then turn the COG into a PoseStamped message by adding a timestamp and the 

frame_id of the incoming point cloud message as well as a unit orientation. 

53        self.target_pub.publish(target) 

Finally, we publish the message on the /target_pose topic. 
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 10.  DETECTING AND TRACKING AR TAGS 

IMPORTANT NOTE: At the time of this writing, the ar_track_alvar package 

works on 64-bit only installations of Ubuntu.  If you have a 32-bit system, you can still 

use it to generate patterns, but it will not work for tracking. 

Even when using state-of-the art computer vision algorithms, programming a robot to 

reliably detect and recognize objects in a natural setting is an ongoing challenge.  The 

next best thing to recognizing objects themselves is to tag them in some way that makes 

identification easier. 

 
It turns out that certain kinds of checkerboard-like patterns like those shown above are 

particularly easy to recognize under different lighting conditions, viewing angles, and 

distances.  These patterns are called fiducial markers or AR tags.  AR stands for 

"augmented reality" because such tags can be added to objects and detected in video 

recordings so that animations or other artificial labels (such as the name of the object) 

can be overlaid on the video in place of the tag.  

AR tags can also be used for robot localization by placing a number of tags on walls or 

ceilings in such a way that the robot can always compute its position and orientation 

relative to one or more tags. 

In this chapter, we will learn how to use the ar_track_alvar ROS package for 

detecting and tracking AR tags.  We will also develop a "follow me" node that enables a 

mobile robot to follow a moving AR tag. 

 10.1  Installing and Testing the ar_track_alvar Package 
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Install the Debian Ubuntu package for ar_track_alvar as follows: 

$ sudo apt-get install ros-indigo-ar-track-alvar 

That's all there is to it! 

 10.1.1  Creating your own AR Tags 

The rbx2 repository includes a package called rbx2_ar_tags.  We will create a few 

AR tags and store them in the data subdirectory of this package.  Of course, you can 

also store these tags in a package of your own choosing. 

First move into the tags directory: 

 

Now run the createMarker utility included in the ar_track_alvar package.  The 

createMarker command takes an ID argument from 0-65535 specifying the particular 

pattern we want to generate.  Let's start with ID 0: 

$ rosrun ar_track_alvar createMarker 0 

This command will create a file called MarkerData_0.png in the current directory.  

You can view the image using a utility such as eog ("eye of Gnome"): 

 

should result in the following image: 

 

If you run the createMarker utility without arguments, you will see a menu of 

options: 

$ roscd rbx2_ar_tags/data 

$ eog MarkerData_0.png 
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$ rosrun ar_track_alvar createMarker 

Usage:  
  /opt/ros/indigo/lib/ar_track_alvar/createMarker [options] argument  

    65535             marker with number 65535  
    -f 65535          force hamming(8,4) encoding  
-1 "hello world"  marker with string  
-2 catalog.xml    marker with file reference  
-3 www.vtt.fi     marker with URL  
    -u 96             use units corresponding to 1.0 unit per 96 pixels  
    -uin              use inches as units (assuming 96 dpi)  
    -ucm              use cm's as units (assuming 96 dpi) <default>  
    -s 5.0            use marker size 5.0x5.0 units (default 9.0x9.0)  
    -r 5              marker content resolution -- 0 uses default  
    -m 2.0            marker margin resolution -- 0 uses default  
    -a                use ArToolkit style matrix markers  
    -p                prompt marker placements interactively from the user  

Of the options listed, you will probably make most use of the -s parameter to adjust the 

size (default is 9 x 9 units).  You can also use the -u parameter to change the 

measurement units (the default is cm).  So to make a marker with ID 7 that is 5cm x 5cm 

big, use the command: 

$ rosrun ar_track_alvar createMarker -s 5 7 

NOTE: the space between -s and 5 above is required. 

Larger tags are useful for navigation and localization since they are more easily 

recognized from a greater distance.  Smaller tags can be used to label objects that will be 

viewed at a closer range. 

 10.1.2  Generating and printing the AR tags 

Let's create three small AR tags to use for testing: 

$ roscd rbx2_ar_tags/data 
$ rosrun ar_track_alvar createMarker -s 5 0 
$ rosrun ar_track_alvar createMarker -s 5 1 
$ rosrun ar_track_alvar createMarker -s 5 2 

The three generated markers should look like this: 
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Next we need to print out the markers.  You can do so either one at a time or bring all 

three into an image editor like Gimp and print them on one sheet.  You can find all three 

on a single graphic in the file Markers_0_2.png in the rbx2_ar_tags/config 

directory.  Print this file so that we can test all three markers at once. 

 10.1.3  Launching the camera driver and ar_track_alvar node 

The ar_track_alvar package can utilize depth data from an RGB-D camera to assist 

in the detection and localization of a marker.  We will therefore assume we have a 

Kinect or Xtion Pro Live camera. 

Begin by launching the OpenNI camera node: 

$ roslaunch rbx2_vision openni_node.launch 

Next, launch the AR node using the file  ar_indiv_kinect.launch in the 

rbx2_ar_tags package: 

$ roslaunch rbx2_ar_tags ar_indiv_kinect.launch 

You should see the following INFO messages on the screen: 

process[ar_track_alvar-1]: started with pid [25697]  
[ INFO] [1380290350.331876962]: Subscribing to info topic  
[ INFO] [1380290351.344021916]: Subscribing to image topic  

Before going any further, let's look at the ar_indiv_kinect.launch file. 

<launch> 
   <arg name="marker_size" default="6.6" /> 
   <arg name="max_new_marker_error" default="0.08" /> 
   <arg name="max_track_error" default="0.2" /> 

   <arg name="cam_image_topic" default="/camera/depth_registered/points" /> 
   <arg name="cam_info_topic" default="/camera/rgb/camera_info" /> 
   <arg name="output_frame" default="/camera_link" /> 

   <node name="ar_track_alvar" pkg="ar_track_alvar" type="individualMarkers"  
respawn="false" output="screen" args="$(arg marker_size) $(arg 
max_new_marker_error) $(arg max_track_error) $(arg cam_image_topic) $(arg  
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cam_info_topic) $(arg output_frame)" /> </launch> 

Note that we have set the marker size to 6.6 even though we created the markers with a 

size parameter of 5cm.  Depending on your printer, this size discrepancy is to be 

expected but the number we want to use in the launch file is the size you actually 

measure on the printout.  In my case, the three markers were each 6.6cm on a side. 

The max_new_marker_error and max_track_error are described on the 

av_track_alvar Wiki page and the values given above generally work fairly well.  

Here is the description from the Wiki: 

• max_new_marker_error (double) – A threshold determining when new 

markers can be detected under uncertainty 

• max_track_error (double) –A threshold determining how much tracking 

error can be observed before an tag is considered to have disappeared 

Returning to the launch file above, the cam_image_topic and cam_info_topic are 

what we would expect when using the OpenNI driver.  The output_frame is a useful 

parameter to note.  By default, the frame is set to the /camera_link frame;  however, 

if your camera is part of a robot, then you can use any other frame on the robot here.  

For example, if you use the /base_link frame, then tag poses will be published 

relative to the base frame.  This feature will be used in our "follow me" script later in the 

chapter. 

 10.1.4  Testing marker detection 

Now that we have the ar_track_alvar node running, hold up the test printout in front 

of the camera.  You should see a series of messages similar to the following in the 

terminal window used to launch the ar_track_alvar node: 

--------------------------  
******* ID: 0  
******* ID: 1  
******* ID: 2  
--------------------------  
******* ID: 0  
******* ID: 1  
******* ID: 2  

 

These messages indicate that the ar_track_alvar node has detected three markers 

with ID's 0, 1 and 2.  Try covering one of the markers with your hand and you should 

see only two IDs displayed. 
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 10.1.5  Understanding the /ar_pose_marker topic 

The ar_track_alvar node publishes the ID and pose of each detected marker on the 

/ar_pose_maker topic.  Each message on this topic consists of a header and an array 

of markers.  Each marker has message type AlvarMarker whose fields can be seen by 

issuing the command: 

$ rosmsg show ar_track_alvar/AlvarMarker 
std_msgs/Header header   uint32 
seq   time stamp   string 
frame_id uint32 id uint32 
confidence 
geometry_msgs/PoseStamped pose   
std_msgs/Header header     
uint32 seq     time stamp     
string frame_id   
geometry_msgs/Pose pose     
geometry_msgs/Point position  
      float64 x       
float64 y       
float64 z  
    geometry_msgs/Quaternion orientation  
      float64 x       
float64 y       
float64 z       
float64 w  

As you can see, the message is quite straightforward including a header, the marker's ID, 

a confidence value (not currently implemented), and the estimated pose of the marker 

relative to the output frame which is stored in the top level header frame_id. 

To see the marker poses currently being detected, hold the test printout up to the camera 

and echo the /ar_pose_marker topic: 

$ rostopic echo /ar_pose_marker 

Remember, that the message is an array of markers, so to view the data for a single 

marker, use an array index like this: 

$ rostopic echo /ar_pose_marker/markers[0] 

(NOTE: This command will fail with an error unless you are already holding the test 

markers in front of the camera.  If this happens to you, make sure you hold the printout 

in front of the camera before running the command.) 

As you move the markers around in front of the camera, you should see the position and 

orientation values changes accordingly.  Note that you can rotate the markers as much as 
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you like and even tilt the printout so that the camera is viewing the tags on an oblique 

angle, yet tracking should still be successful for most poses of the targets. 

 10.1.6  Viewing the markers in RViz 

The ar_track_alvar node publishes a visualization marker for each detected tag on 

the topic /visualization_markers so we can view the markers in RViz while 

tracking.  Bring up RViz with the included launch file: 

$ rosrun rviz rviz -d `rospack find rbx2_ar_tags`/ar_tags.rviz 

If you now hold the test printout in front of the camera, you should see all three markers 

appear in RViz in the same relative position and orientation as they appear on the page. 

Try rotating and moving the page and the markers should move accordingly.  If you 

cover a tag with your hand, its should disappear from RViz. 

 10.2  Accessing AR Tag Poses in your Programs 

As we have seen, the ar_track_alvar node publishes the poses of detected tags on 

the topic /ar_pose_marker.  So we only need to subscribe to this topic in our own 

nodes to access the poses of each marker. 

You can find an example of how to do this in the script ar_tags_cog.py in the 

directory rbx2_ar_tags/nodes.  This node simply computes the combined COG of 

all detected tags and publishes the result as a PoseStamped message on the topic 

/target_pose.  We will then use the 3D head tracking node we created in the previous 

chapter to track the tags. 

 10.2.1  The ar_tags_cog.py script 

Before looking at the code, let's try it out.  If you are not still running the camera node 

and the AR detection node, bring them up now: 

 

Now open another terminal and run the ar_tags_cog.launch file: 

$ roslaunch rbx2_ar_tags ar_tags_cog.launch 

You should see a startup message similar to the following: 

[INFO] [WallTime: 1385342429.874338] Publishing tag COG on topic 
/target_pose...  

Next, open another terminal and monitor the messages on the /target_pose topic: 

$ roslaunch rbx2_vision openni_node.launch 

$ roslaunch rbx2_ar_tags  ar_indiv_kinect.launch 
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Finally, hold the test marker printout in front of the camera and you should start seeing 

pose messages appear in the /target_pose topic window. 

The ar_tags_cog.launch file runs the ar_tags_cog.py node and sets an optional 

list of valid IDs: 

<launch> 
   <node pkg="rbx2_ar_tags" name="ar_tags_cog" type="ar_tags_cog.py" 
output="screen">       <rosparam> 
         tag_ids: [0, 1, 2] 
      </rosparam> 
   </node> 
</launch> 

In this case, we have indicated that we only want to track IDs 0, 1 and 2.  Any other tag 

IDs detected will be ignored by the ar_tags_cog.py node as we shall now see. 

Link to source: ar_tags_cog.py 

1 #!/usr/bin/env python 
2 
3 import rospy 
4 from geometry_msgs.msg import Point, PoseStamped 
5 from ar_track_alvar.msg import AlvarMarkers 
6 
7 class TagsCOG(): 
8 def __init__(self): 
9 rospy.init_node("ar_tags_cog") 
10 
11 # Read in an optional list of valid tag ids 
12 self.tag_ids = rospy.get_param('~tag_ids', None) 
13         
14 # Publish the COG on the /target_pose topic as a PoseStamped 

message 
15 self.tag_pub = rospy.Publisher("target_pose", PoseStamped) 16 
17        rospy.Subscriber("ar_pose_marker", AlvarMarkers, self.get_tags) 
18         
19        rospy.loginfo("Publishing combined tag COG on topic /target_pose...") 
20                 
21 def get_tags(self, msg): 
22 # Initialize the COG as a PoseStamped message 
23 tag_cog = PoseStamped() 
24         
25 # Get the number of markers 
26 n = len(msg.markers) 

$ rostopic echo /target_pose 
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27         
28        # If no markers detected, just return 29        

if n == 0: 
30            return 
31 
32        # Iterate through the tags and sum the x, y and z coordinates         

33        for tag in msg.markers: 
34 tag_cog.pose.position.x += tag.pose.pose.position.x 
35 tag_cog.pose.position.y += tag.pose.pose.position.y36            

tag_cog.pose.position.z += tag.pose.pose.position.z 
37             
38 # If we have tags, compute the COG 
39 tag_cog.pose.position.x /= n 
40 tag_cog.pose.position.y /= n 
41 tag_cog.pose.position.z /= n42 
43 # Give the COG a unit orientation 
44 tag_cog.pose.orientation.w = 1 
45                
46 # Add a time stamp and frame_id 
47 tag_cog.header.stamp = rospy.Time.now() 
48 tag_cog.header.frame_id = msg.markers[0].header.frame_id 49 
50 # Publish the COG 
51 self.tag_pub.publish(tag_cog)       
52   
53 if __name__ == '__main__': 
54 try: 
55 TagsCOG() 
56 rospy.spin() 
57 except rospy.ROSInterruptException: 
58 rospy.loginfo("AR Tags COG node terminated.") 
59 

By this point in your ROS programming, this script will probably appear fairly basic so 

let's just touch on the key lines. 

5 from ar_track_alvar.msg import AlvarMarkers 

As we saw earlier, the alvar_track package defines the AlvarMarkers message type 

to describe an array of markers so we import the message type at the top of the script. 

12        self.tag_ids = rospy.get_param('~tag_ids', None) 

To improve reliability, we can read in an optional list of tag IDs.  Any IDs not in the list 

will be ignored when computing the COG.  The valid tag IDs can be set in the launch 

file as we saw earlier. 

15        self.tag_pub = rospy.Publisher("target_pose", PoseStamped) 

Next we define a publisher to output the COG of the tracked tags as a PoseStamped 

message on the topic /target_pose. 

17        rospy.Subscriber("ar_pose_marker", AlvarMarkers, self.get_tags) 
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Here we subscribe to the /ar_pose_marker topic and set the callback to the function 

get_tags() described next. 

21 def get_tags(self, msg): 
22 # Initialize the COG as a PoseStamped message 
23 tag_cog = PoseStamped() 
24         
25 # Get the number of markers 
26 n = len(msg.markers) 
27         
28        # If no markers detected, just return 29        

if n == 0: 
30            return 

The get_tags() begins by checking the number of tags detected.  If there are none, we 

simply return. 

32        # Iterate through the tags and sum the x, y and z coordinates         

33        for tag in msg.markers: 
34 tag_cog.pose.position.x += tag.pose.pose.position.x 
35 tag_cog.pose.position.y += tag.pose.pose.position.y36            

tag_cog.pose.position.z += tag.pose.pose.position.z 
37             
38 # If we have tags, compute the COG 
39 tag_cog.pose.position.x /= n 
40 tag_cog.pose.position.y /= n 
41 tag_cog.pose.position.z /= n42 
43 # Give the COG a unit orientation 
44 tag_cog.pose.orientation.w = 1 
45                
46 # Add a time stamp and frame_id 
47 tag_cog.header.stamp = rospy.Time.now() 
48 tag_cog.header.frame_id = msg.markers[0].header.frame_id 49 
50 # Publish the COG 
51 self.tag_pub.publish(tag_cog) 

Here we iterate through the markers in the message array and sum up the x, y and z 

coordinates of each marker.  If we have defined a list of valid tag IDs, then any IDs not 

in the list are skipped.  If the tag list is empty (None), we include all detected tags.  We 

then compute the mean values for each component which become the position values for 

the COG.  We also assign the COG a unit orientation just to make it a proper pose 

message.  After adding a time stamp and frame_id, we publish the COG on the 

/target_pose topic. 

 10.2.2  Tracking the tags with a pan-and-tilt head 

If your robot has a pan-and-tilt head using Dynamixel servos, you can have the camera 

track the tag target published by the ar_tags_cog node. 

Skip any of the following launch files if you already have them running from the 

previous section.  Begin by launching the OpenNI node for your depth camera. 

$ roslaunch rbx2_vision openni_node.launch 
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Next, bring up the ar_track_alvar node: 

$ roslaunch rbx2_ar_tags ar_indiv_kinect.launch 

Now run the ar_tags_cog launch file so that the COG of any detected tags will be 

published on the /target_pose topic: 

$ roslaunch rbx2_ar_tags ar_tags_cog.launch 

Next, launch the startup file for your robot and servos.  We'll use the head-only version 

of Pi Robot as an example: 

$ roslaunch rbx2_bringup pi_robot_head_only.launch sim:=false 

To keep the servos from overheating, bring up the monitor_dynamixels.launch 

file: 

$ roslaunch rbx2_diagnostics monitor_dynamixels.launch 

Now bring up the 3D head tracker node we developed in the last chapter: 

$ roslaunch rbx2_dynamixels head_tracker.launch sim:=false 

If you move the AR tag(s) in front of the camera, the head should track the COG of any 

detected markers. 

 10.3  Tracking Multiple Tags using Marker Bundles 

The ar_track_alvar Wiki page refers to the use of tag bundles to improve the 

robustness of tracking by using more than one marker whose relative positions are 

known ahead of time.  While we have already demonstrated an application that 

computes the COG of a group of markers, the markers in a tag bundle are assumed to 

fixed relative to a "master tag" and their relative positions are measured before hand and 

stored in a configuration file.  This would enable the pose of a tracked object to be 

determined even if one of the markers is not visible. 

At the time of this writing, support for tag bundles is not included in the Debian version 

of the ar_track_alvar package and the source version does not appear to run 

without an error.  However, you may wish to try it yourself or at least keep an eye open 

for updates on the project repository. 

 10.4  Following an AR Tag with a Mobile Robot 

In Volume 1, we created a pair of follower applications to enable a mobile robot to 

follow either a specific type of object (face or color) or a moving person.  Following an 
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AR tag is even easier and more robust since a tag tends to be easier to detect under 

different lighting conditions and backgrounds. 

For this application, we will use a fairly large marker such as the example found in the 

rbx2_ar_tags/config directory called Marker_8_large.png.  This particular 

image is 17.5 cm on a side and fits nicely on an 8.5 x 11 sheet of paper.  Print out this 

marker and stick it to a piece of cardboard or clipboard so that you can carry it around in 

front of the robot. 

To bring up the ar_track_alvar node with the larger marker size, we will use the  

launch file ar_large_markers_kinect.launch found in the 

rbx2_ar_tags/launch directory.  The file is shown below: 
1 <launch> 
2 <arg name="marker_size" default="17.5" /> 
3 <arg name="max_new_marker_error" default="0.08" /> 
4 <arg name="max_track_error" default="0.5" /> 
5 
6 <arg name="cam_image_topic" default="/camera/depth_registered/points" /> 
7 <arg name="cam_info_topic" default="/camera/rgb/camera_info" /> 
8 
9 

<arg name="output_frame" default="/base_footprint" /> 

10 <arg name="debug" default="false" /> 
11 <arg if="$(arg debug)" name="launch_prefix" value="xterm -e gdb --args" /> 
12 <arg unless="$(arg debug)" name="launch_prefix" value="" /> 
13 
14 <node name="ar_track_alvar" pkg="ar_track_alvar" type="individualMarkers" 

respawn="false" output="screen" args="$(arg marker_size) $(arg  
max_new_marker_error) $(arg max_track_error) $(arg cam_image_topic) $(arg 

cam_info_topic) $(arg output_frame)" launch-prefix="$(arg launch_prefix)" /> 

15 </launch> 

Notice how we set the marker_size parameter to 17.5 cm in line 2.  We also set a fairly 

high max_track_error value of 0.5 in line 4.  This value was found by trial and error 

to reduce the number of frames where the ar_track_alvar node lost the target.  Of 

course, you can try different values with your setup. 

Finally, notice how we set the output_frame to /base_footprint in line 8.  (If your 

robot model does not use a /base_footprint frame, you could use /base_link 

instead.)  This tells the ar_track_alvar node to publish marker poses relative to the 

base frame which means we don't have to do any frame transforms ourselves when it 

comes to adjusting the robot's motion to follow the marker. 

The script that actually causes the robot to follow the marker is called  

ar_follower.py and is found in the rbx2_ar_tags/nodes subdirectory.  And the  

corresponding launch file where we set various parameters is called 

ar_follower.launch in the rbx2_ar_tags/launch directory. 

The ar_follower.py script is almost identical to the follower nodes studied in  

Volume 1.  The main difference is that we now subscribe to the topic   



 

 Detecting and Tracking AR Tags - 271 

/ar_pose_marker instead of /roi as we did for face or color or a point cloud as was 

done for the person follower.  Once we know the pose of the AR marker relative to the 

robot's base, we can adjust its rotation and linear speed accordingly. 

The key part of the script is the callback for the subscriber to the /ar_pose_marker 

topic so let's look at that in detail. 

76 def set_cmd_vel(self, msg): 
77 # Pick off the first marker (in case there is more than one) 78        

try: 
79            marker = msg.markers[0] 80            

if not self.target_visible: 
81                rospy.loginfo("FOLLOWER is Tracking Target!") 

82            self.target_visible = True 83        except: 
84 # If target is lost, stop the robot by slowing it incrementally 
85 self.move_cmd.linear.x /= 1.5 
86 self.move_cmd.angular.z /= 1.5 87             

88 if self.target_visible: 
89 rospy.loginfo("FOLLOWER LOST Target!") 
90 self.target_visible = False 
91             
92            return 
93                 
94        # Get the displacement of the marker relative to the base 95        

target_offset_y = marker.pose.pose.position.y 
96         
97 # Get the distance of the marker from the base 
98 target_offset_x = marker.pose.pose.position.x 
99         
100 # Rotate the robot only if the displacement of the target exceeds the 
threshold 
101 if abs(target_offset_y) > self.y_threshold: 
102 # Set the rotation speed proportional to the displacement of the target 
103 speed = target_offset_y * self.y_scale 
104 self.move_cmd.angular.z = copysign(max(self.min_angular_speed, 
105 min(self.max_angular_speed, abs(speed))), speed) 106        else: 
107            self.move_cmd.angular.z = 0.0 
108  
109 # Now get the linear speed 
110 if abs(target_offset_x - self.goal_x) > self.x_threshold: 111            

speed = (target_offset_x - self.goal_x) * self.x_scale 112            

if speed < 0: 
113 speed *= 1.5 
114 self.move_cmd.linear.x = copysign(min(self.max_linear_speed, 

max(self.min_linear_speed, abs(speed))), speed) 115        else: 
116            self.move_cmd.linear.x = 0.0 

Our callback function set_cmd_vel() computes the Twist command we want to send 

to the robot to keep it facing the marker and to stay within a given distance of it.  Let's 

start  with the first few lines: 
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78 try: 
79 marker = msg.markers[0] 80            

if not self.target_visible: 
81                rospy.loginfo("FOLLOWER is Tracking Target!") 

82            self.target_visible = True 83        except: 
84 # If target is lost, stop the robot by slowing it incrementally 
85 self.move_cmd.linear.x /= 1.5 
86 self.move_cmd.angular.z /= 1.5 
87             
88 if self.target_visible: 
89 rospy.loginfo("FOLLOWER LOST Target!") 
90 self.target_visible = False 91             

92            return 

Recall that the messages published on the /ar_pose_marker topic consist of an array 

of markers of type AlvarMarkers.  In Line 79 above we attempt to pull out the first 

such marker in the array.  We use try-except around this block since if no marker is 

visible, attempting to access the first marker (msg.markers[0]) will throw an 

exception.  This in turn enables to know that the target is lost and we begin to stop the 

robot if it is moving and set the self.target_visible flag to False.  It is a good 

idea to slow down the robot incrementally as we have done in Lines 85 and 86 since the 

ar_track_alvar package can sometimes fail to detect the marker for just a frame or 

two and we don't want the robot to stop and start with a jerky motion when this occurs. 

94 # Get the displacement of the marker relative to the base 
95 target_offset_y = marker.pose.pose.position.y 
96         
97 # Get the distance of the marker from the base 
98 target_offset_x = marker.pose.pose.position.x 

Assuming we have a marker, we get the lateral offset from the positional y component 

of the marker pose and the fore/aft offset from the x component.  How do we know 

these are the right components?  Recall that we set the output_frame for the 

ar_track_alvar node to be /base_footprint.  This means that the marker poses 

as published in the AlvarMarkers messages and received by our callback function are 

already defined in our base frame.  Furthermore, our base frame is oriented with the 

xaxis pointing forward and the y-axis pointing left. 

With the offsets in hand, it is a simple matter to set the rotational and linear components 

of the Twist command appropriately as is done in Lines 101-116.  As with our earlier 

follower programs, we first check that the offset exceeds a minimal threshold, then we 

set the robot speeds proportional to the offsets while respecting the maximum and 

minimum speeds set in the launch file. 
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 10.4.1  Running the AR follower script on a TurtleBot  

If you have a TurtleBot, you can use the following commands to test the 

ar_follower.py script.  You can use similar commands with other robots by simply 

changing the launch file used to bring up your robot driver. 

Start by launching the TurtleBot's startup files.  Note that we are using the launch file 

from the Volume 1 package and this command must be run on the TurtleBot's laptop: 

$ roslaunch rbx1_bringup turtlebot_minimal_create.launch 

Next, bring up the OpenNI node for the robot's depth camera.  This command must also 

be run on the robot's computer. 

$ roslaunch rbx2_vision openni_node.launch publish_tf:=false 

NOTE: In the command above, we set the publish_tf argument to false since the 

TurtleBot's launch files and URDF model already take care of publishing the camera 

frames. 

Next, bring up the ar_track_alvar node for large markers.  You can run this on either 

the robot's computer or your desktop assuming the two are networked appropriately: 

$ roslaunch rbx2_ar_tags ar_large_markers_kinect.launch 

Finally, run the ar_follower.launch file to bring up the ar_follower.py node and 

supporting parameters: 

$ roslaunch rbx2_ar_tags ar_follower.launch 

This command can also be run on either the robot or a networked desktop. 

Now hold the large marker printout in front of the robot's camera a few feet away and 

start moving backward, forward, left and right.  Once the ar_track_alvar node has 

locked on to the marker, the robot should start to follow your movements. 

 10.5  Exercise: Localization using AR Tags 

As we saw in Volume 1, one can use the ROS gmapping and amcl packages to do 

SLAM using either a laser scanner or a depth camera.  However, SLAM does not always 

work so well in long hallways or when somebody rearranges the furniture.  Infrared 

lasers and depth cameras can also be relatively blind to darker colors, especially black, 

so if a wall happens to have a black baseboard right at the scan height of the laser or 

camera, it may not appear in the map at all. 

An alternative to scan-based SLAM uses fiducials or AR tags strategically placed on 

walls or ceilings so that the robot can use AR detection and triangulation to figure out 

where it is.  Although this method involves modifying the environment, fiducials can 
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make for rather interesting wall art and will certainly get some attention at your next 

party.  More importantly, markers can be placed above the furniture and even on the 

ceiling so that changes to the layout of a room should have little effect on the robot.  Of 

course, care must be taken that the robot can see at least one marker at all times, 

although a simple search routine can often get the robot out of a blind spot.  Finally, 

markers can be assigned easy to remember semantic tags such as "middle of hallway" or 

"entrance to kitchen".  This makes it relatively easy to create a mapping between tags 

and verbal instructions so that we could use a speech recognition node and ask the robot 

to go to a particular location. 

The code you need to detect and localize markers relative to the robot was already 

covered in the previous section describing the ar_follower.py node.  But it is left as 

an exercise for the reader to write a localization node using AR tags.  A good place to 

start might be this student project on Indoor localization using augmented reality 

markers.  Another project written in C is being developed by Wayne Gramlich at 

https://github.com/waynegramlich/fiducials with a conversion to C++ and ROS 

integration by Austin Hendrix at https://github.com/trainman419/fiducials_ros. 
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 11.  ARM NAVIGATION USING MOVEIT! 

It is relatively easy to add an arm to a robot, but it is much harder to make it do anything 

useful.  When using our own arms and hands, it seems rather simple to reach for an 

object in space, even when constrained by nearby obstacles.  However, it turns out that 

controlling such movements is a complex mathematical problem when we try to 

program a robot to perform similar actions. 

Fortunately for us, ROS provides all the tools we need to program a multi-jointed arm 

to perform complex reaching and grasping tasks under real-world conditions.  A gripper 

or hand attached to the end of an arm is referred to as an end-effector, and the general 

problem of moving the end-effector to a given position and orientation in space while 

avoiding obstacles is called arm navigation.  It is also common to refer to a robot arm 

as a manipulator, and when the arm is attached to a mobile robot, we'll often use the 

term mobile manipulation instead. 

The most common goal in arm navigation is to move the end-effector to a target 

position and orientation in space.  If the arm includes a gripper or hand of some sort, we 

might also want to grasp an object at the target location and move it somewhere else in 

a task called pick and place. 

A powerful new ROS package called MoveIt! addresses almost all aspects of mobile 

manipulation including Motion Planning, Kinematics, Collision Checking, Grasping, 

Pick and Place, and Perception. 

Originally developed at Willow Garage and now maintained by SRI International, 

MoveIt! is still actively being developed and not all of its features are complete or fully 

document.  The goal of this chapter is therefore to introduce a number of the 

fundamental operations using easy-to-understand code samples.  However, to explore 

the full MoveIt API in all its depth would take an entire volume of its own so we will 

really only be scratching the surface. 

Before we dive into the examples, we need to cover a few background topics.  If you are 

already familiar with the basic terminology used in arm navigation including degrees of 

freedom, ROS joint types, and forward and inverse kinematics, feel free to skip ahead. 

In this chapter we will use MoveIt! to carry out the four most common arm navigation 

tasks: 

• moving the arm to a specified joint configuration using forward kinematics 

• moving the end-effector to a specified Cartesian pose (position and orientation) 

using inverse kinematics 
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• moving the arm in the presence of obstacles and path constraints 

• performing a pick-and-place operation where the arm uses its gripper to grasp 

an object and move it to another location 

But before we get to these tasks, we have to lay some ground work. 

 11.1  Do I Need a Real Robot with a Real Arm? 

Not everyone has a robot with a multi-jointed arm.  So MoveIt! provides a demo mode 

for running various arm navigation scenarios using nothing more than a URDF model 

of your robot and a set of fake joint controllers that are provided by MoveIt! itself.  

Once we have MoveIt! working in demo mode, we will switch to the ArbotiX simulator 

that we used in Volume 1 and explored more fully in Chapter 5.  This will allow us to 

test how the arm would move if using real servos but without any physics involved.  If 

your robot does have an arm, we provide instructions on how to use MoveIt! to control 

real Dynamixel servos.  Finally, in the next chapter on using the Gazebo simulator, we 

will run our MoveIt! code using a model of the sophisticated UBR-1 robot from 

Unbounded Robotics. 

 11.2  Degrees of Freedom 

A 3-dimensional object requires six numbers to specify its pose in everyday Cartesian 

space: three for its position (x, y, z) and three for its orientation (roll, pitch, yaw).  A 

general purpose arm therefore requires at least six appropriately oriented joints to have 

a fighting chance of reaching and grasping nearby objects.  It is certainly possible to use 

arms with fewer joints, especially when operating under more restricted conditions.  For 

example, a fixed position assembly line robot that only needs to pick up objects from 

directly overhead can get away with just three or four degrees of freedom. 

The second complication is the presence of constraints.  Constraints on the movement 

of the arm are typically caused by the presence of obstacles, including other parts of the 

robot itself.  For example, we don't want the arm to collide with the robot's head or 

torso.  Similarly, if the robot needs to reach an object that is next to an obstacle, not 

only must the gripper make it cleanly past the obstacle, but the rest of the arm must not 

strike it either.  Imagine reaching for the butter at the dinner table without spilling the 

wine glass near your elbow. 

We can also envision path constraints on the arm.  For example, if the task is to move  

an open container of liquid from one location to another, even in an obstacle-free 

environment, the hand or gripper must keep the container in a relatively upright 
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orientation while the rest of the arm does the moving.  Planning an arm trajectory in the 

presence of constraints is a very complex problem and rarely has an analytical solution.  

As a result, most arm controllers must resort to random sampling of the problem space. 

In addition to degrees of freedom and constraints, a number of other factors determine 

the overall usability of an arm.  We must also consider the range of motion of each joint, 

the orientation of the joint rotation axes, and of course, the lengths of the arm segments 

between joints.  Together, these properties determine the reachability space of the arm.  

A well designed arm will be able to position and orient its gripper in a relatively large 

volume encompassing the desired workspace of the robot—the region where the robot 

will do most of its grasping.  Robots like the PR2 and UBR-1 have a telescoping torso 

joint that greatly increases the reachability space of these robots. 

The movement and control of robotic arms is called arm navigation.  Fortunately for us, 

ROS provides all the tools we need to create a model of our robot's arm and make it 

perform a number of real-world tasks.  But before diving into the code, we need to add 

a few more concepts to our vocabulary. 

 11.3  Joint Types 

Robot joints come in a number of flavors which are defined on the ROS wiki: 

• revolute - a  joint like a servo that rotates along an axis and has a limited 

range specified by the upper and lower limits. 

• continuous – a joint like a drive wheel that rotates around an axis and has no 

upper or lower limits 

• prismatic - a sliding joint like a linear actuator that has a limited range 

specified by the upper and lower limits 

• fixed - not really a joint because it cannot move. All degrees of freedom are 

locked. 

• floating - this joint type allows motion along all 6 degrees of freedom. 

• planar - this joint type allows motion in a plane perpendicular to the axis 

Most of the joints we will deal with are revolute like a regular servo.  We will therefore 

typically use the terms "joint angle" and "joint position" interchangeably.  If we are 

dealing specifically with a prismatic joint like a telescoping torso, we will use the term 

"position" instead of "angle". 
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 11.4  Joint Trajectories and the Joint Trajectory Action Controller 

So far we have been controlling servo motions by sending individual position and speed 

commands to each joint on every update cycle of our control script.  ROS defines a 

more powerful method for controlling the movements of multiple joints simultaneously 

called  

the Joint Trajectory Action Controller (JTAC).  The JTAC is designed to  

accept an entire joint trajectory as input.  A joint trajectory is a list or sequence of joint 

positions, velocities, accelerations and efforts for each joint over a period of time. 

You can view the position and velocity components of a joint trajectory by using 

rqt_plot to graph the relevant components of the /joint_states message while 

the arm is moving.  The image below shows the joint positions of Pi Robot's six arm 

joints as he reaches for an object.  The x-axis is time in seconds and the y-axis reflects 

joint position in radians.  Each color represents a different joint. 

 

This plot was generated by running rqt_plot on the relevant joint positions while the 

arm was moving.  The actual command used was: 

$ rqt_plot /joint_states/position[2], /joint_states/position[3],  
/joint_states/position[4], /joint_states/position[5],  
/joint_states/position[6], /joint_states/position[8] 
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The next plot shows the joint velocities as the arm moves between seven different poses 

with a pause in between each motion except the fourth and fifth.  Notice how the joint 

velocities begin and end with 0 for each trajectory except at the boundary between the 

fourth and fifth trajectories where there is blending from the end of one trajectory into 

the start of the next. 

 

This plot was generated using the command: 

$ rqt_plot /joint_states/velocity[2], /joint_states/velocity[3],  
/joint_states/velocity[4], /joint_states/velocity[5],  
/joint_states/velocity[6], /joint_states/velocity[8] 

We can see the various fields in a ROS JointTrajectory message using the 

command: 

 

which should return the following output: 

[trajectory_msgs/JointTrajectory]: 
std_msgs/Header header   uint32 
seq  

$ rosmsg show JointTrajectory 
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  time stamp   
string frame_id 
string[] 
joint_names  
trajectory_msgs/JointTrajectoryPoint[] points  
  float64[] positions   
float64[] velocities   
float64[] accelerations   
float64[] effort   
duration time_from_start  

Here we see that a joint trajectory consists of a standard ROS header together with an 

array of joint names and an array of trajectory points.  A trajectory point consists of an 

array of positions, velocities, accelerations and efforts that describe the motion of the 

joints at that point.  Note that typical trajectories will have all zeros for the joint 

velocities for the first and last point meaning that the arm starts and finishes at rest.   

Each trajectory point also includes a time_from_start that specifies the number of 

seconds after the time stamp in the header when we expect the trajectory to pass 

through this point.   

The simplest joint trajectory would contain a single point specifying how we want the 

joint configuration to look at a given time from start.  But most trajectories will include 

many points that describe the arm configuration at various points over time.  It is the job 

of the joint action trajectory controller to interpolate these points (using splines for 

example) to create a smooth trajectory that can be implemented on the underlying 

hardware.  Both the arbotix and dynamixel_motor packages provide a joint 

trajectory action controller that works with Dynamixel servos.  So to move a 

multijointed Dynamixel arm a certain way over time, we can send the desired joint 

trajectory to one of these controllers which will then compute the required interpolation 

between points and control the servos to move along the requested trajectory.  We will 

see how this works later in the chapter. 

You might be wondering how on earth can we figure out the positions, velocities, 

accelerations and efforts of every joint along an entire trajectory?  And the answer is 

that we almost never have to do this ourselves.  Instead, we will normally specify the 

much simpler goal of moving the end-effector to a specific position and orientation in 

space.  We will then rely on MoveIt! to compute a joint trajectory that will move the 

endeffector into the desired pose, all while avoiding obstacles and satisfying any other 

constraints specific to the task.  This trajectory will then be sent to the joint trajectory 

action controller that will command the servos to execute the planned trajectory on the 

actual arm. 
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 11.5  Forward and Inverse Arm Kinematics 

Using basic trigonometry, it is relatively straightforward to compute the pose of the 

hand or gripper in space when we know the lengths of the links and the joint angles 

between them.  This is called the forward kinematics of the arm and is often abbreviated 

FK.  However, if we are given the desired pose of the end-effector in space and asked to 

compute a set of joint values that will place it there, things start to get messy:  in this 

case we have to compute the inverse kinematics (IK) of the arm.  An algorithm that 

computes the inverse kinematics is called an inverse kinematics solver or simply an IK 

solver. 

Depending on the number of joints in the arm (its degrees of freedom) a given inverse 

kinematics calculation may have one solution, no solution, more than one solution, or 

possibly even an infinite number of solutions.  Consider for example the four situations 

illustrated below where we represent a planar arm attempting to reach a goal location 

indicated by the star. 

 

 2 solutions 1 solution 0 solutions multiple solutions 

 (a) (b) (c) (d) 

In the first three images, the arm has two revolute joints and therefore two degrees of 

freedom.  The location of the goal also requires two values, namely its x and y 

coordinates in the plane.  In situations like (a), the arm generally has two inverse 

kinematic solutions (sometimes called "elbow up" and "elbow down").  However, if a 

joint has a limited range of motion as shown in (b), then only one of these solutions 

may actually be realizable by the arm.  If the goal is out of reach as shown in (c), then 

there are no solutions.  In (d) we add a third joint so now the arm has an extra degree of 

freedom.  As you might expect, this opens up additional solutions. 
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Things get even trickier when we add constraints such as the presence of obstacles.  If a 

potential solution would cause any part of the arm to collide with the obstacle, then that 

solution has to be eliminated.  A kinematic solver that can incorporate constraints is said 

to be constraint aware.  Constraints can also be specified in terms of position and 

orientation of the end-effector.  For example, if the robot has to move an open container 

of liquid from one location on a table to another, then the arm must move so that the 

orientation of the gripper keeps the container from tipping.  MoveIt! makes this type of 

problem relatively easy to solve. 

 11.6  Numerical versus Analytic Inverse Kinematics 

By default, MoveIt! solves the inverse kinematics problem using KDL, the Kinematics 

and Dynamics Library that is part of the Orocos Project (Open Robot Control 

Software). KDL uses numerical methods to do the computation since the inverse 

kinematics of a general kinematic chain is not solvable in closed form.  While 

numerical methods are a good place to start, they suffer from a couple of drawbacks. 

First, numerical methods tend to be relatively slow due to the large number of iterations 

typically required to find a solution.  Second, these methods may fail to find a solution 

altogether if the initial configuration ("seed value") used for a given problem leads the 

process into the wrong part of the configuration space.  If you use MoveIt's default KDL 

plugin for awhile, you will run into occasions where the solver gives up after a number 

of attempts even though you know that the goal pose for the end effector should be 

achievable. 

Fortunately, a faster and more reliable alternative is available.  The OpenRAVE project 

enables the creation of custom analytic IK solvers for many different types of robot arm 

or other kinematic chains.  Later in this chapter we will provide detailed instructions on 

how to generate a custom solver for your robot arm that can then be used with MoveIt! 

in place of the KDL plugin.  The custom solution will typically run 10-30 times faster 

than KDL and will be less likely to miss a valid solution. 

 11.7  The MoveIt! Architecture 

For an excellent description of the overall MoveIt! framework, see the Conceptual 

Overview on the MoveIt! wiki.  MoveIt! provides both a Python and C++ API for 

nearly all aspects of motion control including kinematics, joint control, the planning 

scene and collision checking, motion planning, and 3D perception. 

The API we will use in this book is the Python move group interface.  A move group  

describes a part of the robot that represents a kinematic chain which is a series of links 
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connected by joints such as pan-and-tilt head or an arm.  The planning scene represents 

an abstraction of the state of the world that can monitor the placement of obstacles and 

the state of the robot.  It can therefore be used for collision checking and constraint 

evaluation.  All planning actions must reference a given move group and take place 

within a given planning scene. 

Perception involves the use of sensor data such as laser scans and point clouds to insert 

detected objects into the planning scene, but we can just as easily add virtual objects or 

choose to ignore certain kinds of sensor data.  This allows the robot to plan its actions in 

a virtual environment that may or may not correspond to the immediate state of the 

world around it.  For one thing, this means that we can test all the planning tools using a 

purely simulated robot and a collection of virtual objects.  It also means that we can 

program the robot to "imagine" planning scenarios or to compare a stored planning 

scene with a scene that accurately reflects the current state of the world in front of it. 

Fortunately for us, MoveIt! includes the Setup Assistant that makes it easy to configure 

our robot for motion planning.  In particular, the Setup Assistant will take care of the 

following tasks: 

• URDF → SRDF:  The URDF model of the robot is used to create an enhanced 

Semantic Robot Description File that includes tags defining move groups, end 

effectors, and self-collision information.  The SRDF file is created 

automatically from the URDF file by running the MoveIt! Setup Assistant. 

• Additional configuration files are also automatically created by the Setup 

Assistant and these files specify the robot's kinematic solvers, joint controllers 

and joint limits, motion planners and sensors.  The configuration files are 

created in the config subdirectory of the MoveIt! package directory for a 

given  

robot and the files we will be most concerned are kinematics.yaml, 

controllers.yaml, joint_limits.yaml and sensors_rgbd.yaml,all 

of which will be described in detail later in the chapter. 

• The Setup Assistant also creates a number of launch files for running key 

planning and motion control modules including: 

◦ the planning scene pipeline including collision checking and an occupancy 

grid using an Octomap 

◦ motion planning  using OMPL (Open Motion Planning Library) 
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◦ the move_group node that provides topics, services and actions used for 

kinematics, planning and execution, pick and place, state validation and 

planning scene queries and updates 

◦ a joint trajectory controller manager for launching the appropriate trajectory 

controllers for the given robot 

Two key items not created by the MoveIt! Setup Assistant are the configuration files 

and launch files for your robot's particular joint controller.  We will therefore cover this 

task in detail later in the chapter. 

 11.8  Installing MoveIt! 

To install MoveIt!, first make sure you have the latest updates: 

 

Then install the packages: 

$ sudo apt-get install ros-indigo-moveit-full 

We will also need the IK Fast module: 

$ sudo apt-get install ros-indigo-moveit-ikfast 

IMPORTANT: At the time of this writing there is a bug in the moveit_ros package 

that has been fixed in the source code but has not yet made it into the Debian package 

for Ubuntu 12.04 and ROS Indigo.  We therefore have to install the moveit_ros 

package from source as well as moveit_core and moveit_setup_assistant.  

These will overlay the system packages.  To install the source packages, follow these 

steps: 

$ cd ~/catkin_ws/src 
$ git clone https://github.com/ros-planning/moveit_ros.git 
$ git clone https://github.com/ros-planning/moveit_core.git 
$ git clone https://github.com/ros-planning/moveit_setup_assistant.git 
$ cd ~/catkin_ws 
$ catkin_make 

If you also want to experiment with the MoveIt! configuration for the Willow Garage 

PR2, run the command: 

$ sudo apt-get install ros-indigo-moveit-full-pr2 

$ sudo apt-get update 
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That's all there is to it! 

 11.9  Creating a Static URDF Model for your Robot  

MoveIt! requires a pure URDF model for the robot—i.e. there can be no  

<xacro:include> tags referring to other files.  We can use the ROS xacro utility to 

render our mixed URDF/Xacro model as a static URDF file.  For the one-arm model of 

Pi Robot, the relevant commands would be: 

$ roscd rbx2_description/urdf/pi_robot 
$ rosrun xacro xacro.py pi_robot_with_arm.xacro > pi_robot.urdf 

If you are using your own robot model located in a different package and/or directory, 

alter the commands accordingly.  Also, the name of the resulting URDF file can be 

anything you like but you'll need to remember it when running the MoveIt! Setup 

Assistant. 

To double-check the validity of your URDF model, run the ROS check_urdf utility: 

$ check_urdf pi_robot.urdf | less 

The beginning of the output should look something like this: 

robot name is: pi_robot  
---------- Successfully Parsed XML --------------- 
root Link: base_footprint has 1 child(ren)  
    child(1):  base_link         child(1):  
base_l_wheel_link         child(2):  base_r_wheel_link         
child(3):  torso_link             child(1):  head_base_link                 
child(1):  head_pan_servo_link                     child(1):  
head_pan_bracket_link                         child(1):  
head_tilt_servo_link                             child(1):  
head_tilt_bracket_link                                  

Note how robot name is output correctly as well as the root link which is 

base_footprint in our case.  The rest of the output shows how all the robot's links 

are connected as a tree off the root link. 

NOTE: If you need to change your robot model at a later time, do not edit the static 

URDF file.  Instead, edit the original URDF/Xacro file(s) and then run the xacro utility 

again to regenerate the static file. 

 11.10  Running the MoveIt! Setup Assistant 
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If you have your own robot arm, or even just a URDF model of a robot you would like 

to try in simulation, you will need to first run the MoveIt! Setup Assistant to generate 

the configuration files specific to your setup.  If you just want to use the Pi Robot model 

in simulation, you can skip this section for now since Pi's MoveIt! configuration files 

are already included in the rbx2/pi_robot_moveit_config directory.  Later on in 

the book, we will also test the MoveIt! configuration for the UBR-1 robot. 

The steps below were used to generate the MoveIt! configuration files for Pi Robot.   

You can use these steps as a guide to create your own configuration files if you have a 

URDF model of another robot you'd like to work with.  You can find similar 

instructions for the Willow Garage PR2 at: 

http://docs.ros.org/indigo/api/moveit_setup_assistant/html/doc/tutorial.html 

We are now ready to run the MoveIt! Setup Assistant 

$ roslaunch moveit_setup_assistant setup_assistant.launch 

Eventually the following setup screen should appear: 

 

Now proceed with the following steps. 
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 11.10.1  Load the robot's URDF model 

The setup process begins by loading the static URDF model we created earlier. 

• To create a new MoveIt configuration package, click the button labeled Create 

New MoveIt Configuration Package. 

• Under the section labeled "Load a URDF or Collada Robot Model", click the 

Browse button and navigate to the URDF file we created above: 

rbx2_description/urdf/pi_robot/pi_robot.urdf 

• With your model chosen, click the Load Files button. 

• If all goes well, you should see an image of Pi Robot in the right hand panel. 

(The black background makes certain parts of the model a little hard to see.)  

You can rotate, move and zoom the model using your mouse just like in RViz. 

 

NOTE: You might find that the setup assistant crashes at this point and aborts back to 

the command line.  This is usually due to a crash in the assistant's RViz plugin as it tries 

to come up.  If this happens to you, first simply try again.  If you keep getting crashes, 

try running RViz's GL engine in software-only mode by setting the following 

environment variable: 
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$ export LIBGL_ALWAYS_SOFTWARE=1 

Then run the setup assistant again.  

 11.10.2  Generate the collision matrix 

The collision matrix lists all the links that can never be in collision with each other.  For 

example, the gripper can never collide with one of the wheels because the arm is not 

long enough.  Having this table pre-computed can save value CPU time when it comes 

to planning movements of the arm.  Follow these steps to generate the collision matrix 

for the loaded robot model. 

• click on the Self-Collisions tab on the left panel 

• click on the large button labeled Regenerate Default Collision Matrix.  You 

can generally leave the sampling density set to the default value of 10000.) 

The result should be a list of link pairs that cannot collide with one another because of 

the geometric constraints of the robot.   

 11.10.3  Add the base_odom virtual joint 

Virtual joints are used primarily to attach the robot to the world.  In our case, we want to 

connect the robot's base_footprint frame to the odom frame using a planar joint 

which allows the two links to slide over each other in a 2D plane.  (If your robot uses 

the robot_pose_ekf package to combine wheel odometry information with data from 

an IMU or gyro, then you will connect the robot to the odom_combined frame. 

Create a virtual link called base_odom as follows: 

• click on the Virtual Joints tab on the left panel 

• click on the Add Virtual Joint button 

• in the text box labeled Virtual Joint Name, enter base_odom 

• set the Child Link to base_footprint 

• in the text box labeled Parent Frame Name enter odom  or odom_combined if 

using the robot_pose_ekf package. 

• set the Joint Type to planar 
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• finally, click the Save button 

 

 11.10.4  Adding the right arm planning group 

Planning groups are used to describe different semantic parts of your robot, such as the 

right arm, the right gripper, or the head.  Begin by adding a group for the right arm as 

follows. 

• click on the Planning Groups tab on the left panel 

• click the Add Group button 

• next, fill in the other boxes as follows: 

◦ Group Name: right_arm 

◦ Kinematic Solver:  kdl_kinematics_plugin/KDLKinematicsPlugin 

◦ Kin. Search Resolution: 0.005 

◦ Kin. Search Timeout (sec): 0.05 
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◦ Kin. Solver Attempts: 3 

So far the screen should look like this: 

 

We will add the arm's joints to the planning group as a serial kinematic chain as this is 

required when using the KDL plugin.  Therefore, click the Add Kin. Chain button.    

The next screen should look like the following: 
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Click the link labeled Expand All so see the entire link tree of the robot as shown 

below.  Then select the right_arm_base_link in the tree and click the Choose 

Selected button next to the Base Link text box.  The result should look like this: 

 



 

 Arm Navigation using MoveIt! - 292 

Now select the right_gripper_link for the Tip Link and the result should look like 

this: 

 

Finally, click the Save button.  The final screen should look like this: 
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The last link in the chain is often referred to as the "tip" and typically corresponds to the 

end-effector.  Note how in this case, we are using the virtual right_gripper_link 

that was created in the URDF in between the two gripper fingers to make it easier to 

specify a desired pose for the end-effector. 

You can continue to add planning groups if desired.  For example, if your robot has a 

telescoping torso, you could define a group that includes the torso and the arm.  That 

way the prismatic torso joint can be used when solving for the inverse kinematics of the 

arm. 

 11.10.5  Adding the right gripper planning group 

Next we'll add a planning group for the right gripper.  Note that the procedure is slightly 

different than what we just did for the arm.  Start by clicking the Add Group button in 

the previous screen.  Then fill in the top section as follows: 

• Group Name: right_gripper 

• Kinematic Solver:  None 

• Kin. Search Resolution: 0.005 

• Kin. Search Timeout (sec): 0.05 

• Kin. Solver Attempts: 3 

This time, click the Add Links button.  The screen should look like this: 
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Check that the left and right panels are labeled "Link Names".  In the left panel, select 

all links whose name begins with right_gripper, then click the right arrow button to 

move the links into the right panel.  The result should look like this: 
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Note how the gripper is now highlighted in red in the image on the right.  Finally, click 

the Save button. 

 11.10.6  Defining robot poses 

It will become convenient later on to define a few named poses for the robot arm.  For 

example, we will use the name "resting" for the default pose where the arm hangs 

straight down.  We will also create another pose called "straight_forward" where the 

arm is pointing straight forward and yet another called "wave" where the arm is held 

upward as if waving to someone. 

To define a named pose, proceed as follows: 

• click on the Robot Poses tab on the left 

• click on the Add Pose button 

• enter a name for the pose in the Pose Name text box. 

• Choose the planning group for this pose 

• use the slider controls to position the arm the way you want for the given pose 

The image below shows the screen for the "resting" pose of the right arm: 
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When the arm is positioned the way you want, click the Save button.  To add another 

pose, click the Add Pose button again.  In the following screen shot, we have defined a 

pose called straight_forward with the arm pointing forward and parallel to the 

floor. 

 

To add the "wave" pose, position the arm as follows: 
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When finished, click the Save button. 

 11.10.7  Defining end effectors 

While we have already created the right gripper planning group, we now have to 

identify it as an end-effector which gives it special properties in MoveIt! for actions like 

pickand-place.  Create the right_end_effector object as follows: 

• click the End Effectors tab on the left 

• click the Add End Effector button 

• enter right_end_effector for the End Effector Name 

• select right_gripper in the End Effector Group pull down menu 

• in the Parent Link pull down menu, select right_gripper_link 

• leave the Parent Group blank 

• click the Save button 

Note that we are again using the virtual right_gripper_link instead of a physical 

link.  For grasping operations in particular, it is very helpful to use a reference frame 

located in between the gripper's finger links when planning the approach of the gripper 

toward the object to be grasped. 

 11.10.8  Defining passive joints 

Passive joints like caster wheels are not controlled by the robot and are entered here to 

let MoveIt! know they can't be planned for.  Although Pi Robot does have a caster 

wheel in real life, it was left off the URDF model for simplicity so we have nothing to 

add here.   

 11.10.9  Generating the configuration files 

The final step will automatically generate a ROS package containing all the 

configuration files for your robot.  Proceed with the following steps: 

• click the Configuration Files tab on the left 

• click the Browse button 
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• navigate to your catkin/src directory and create a new folder to hold your 

robot's MoveIt configuration files.  Most people choose a folder name of the 

form robot_name_moveit_config.  So for Pi Robot, we use 

pi_robot_moveit_config.  This will also become the package name for  

your configuration.  Click Open in the file browser to move into the newly 

created folder. 

• click the Generate Package button 

If all files are successfully created, you should see the status message "Configuration 

package generated successfully!" and your screen should look something like this: 

 

To exit the assistant, click the button labeled Exit Setup Assistant. 

Finally, to ensure that ROS can find your new package, run the following command: 

 

We only need to run this command this one time.  New terminals will automatically 

pick up your new package. 

 11.11  Configuration Files Created by the MoveIt! Setup Assistant 

$ rospack profile 
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The MoveIt! Setup Assistant creates all the configuration files needed to test arm 

navigation in demo mode.  These files are stored in the config subdirectory of the 

robot's MoveIt! package.  For instance, the config files for Pi Robot can be found in the 

rbx2 repository under the directory pi_robot_moveit_config/config.  Let's take 

a look at the four files that will concern us the most in this volume.  

 11.11.1  The SRDF file (robot_name.srdf) 

The MoveIt! Setup Assistant needs a place to store the configurations you have chosen 

for your robot's arm(s), end-effectors, named poses and so on.  A standard URDF file 

does not have the flexibility required to store this information so a new file using the 

Semantic Robot Description Format is used for this purpose.  The name of the file is 

robot_name.srdf, so for Pi Robot, the file is called pi_robot.srdf. 

The SRDF file is plain text and easy to read so you can bring it up in a text editor to 

view its contents.  The key tags and definitions are as follows: 

• A <group> element for each planning group listing the chains, joints or links 

making up that group.  For example,  the <group> element for Pi Robot's right arm 

looks like this: 

<group name="right_arm"> 
      <chain base_link="right_arm_base_link" tip_link="right_gripper_link"> 
   </group>            

• A <group_state> element that stores the joint positions for any named poses you 

created.  The element that stores the "wave" pose for Pi Robot's arm looks like this: 

<group_state name="wave" group="right_arm"> 
   <joint name="right_arm_elbow_flex_joint" value="0.1416" /> 
   <joint name="right_arm_forearm_flex_joint" value="0.2629" /> 
   <joint name="right_arm_shoulder_lift_joint" value="-2.6168" /> 
   <joint name="right_arm_shoulder_pan_joint" value="-1.0315" /> 
   <joint name="right_arm_shoulder_roll_joint" value="-1.0288" /> 
   <joint name="right_arm_wrist_flex_joint" value="-0.2116" /> 
</group_state> 

• An <end_effector> element indicating the group and parent link for the 

endeffector.  Here is the element for Pi Robots right gripper: 

<end_effector name="right_end_effector" parent_link="right_gripper_link"  
group="right_gripper" /> 
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• A <virtual_joint> element for each virtual joint created by the Setup Assistant.  

Here is the definition of the planar virtual joint we created between the odom and 

base_footprint frames: 

<virtual_joint name="base_odom" type="planar" parent_frame="odom" 
child_link="base_footprint" /> 

• Finally, at the end of the SRDF file is a long list of <disable_collisions> 

elements.  These lines were created when we generated the collision matrix in the 

Setup Assistant.  The Setup Assistant sorts through the robot's URDF model and  

figures out which pairs of links can never be in collision such as the  

base_footprint and the head_pan_bracket_link which would be 

represented like this: 

<disable_collisions link1="base_footprint" 
link2="head_pan_bracket_link" reason="Never" /> 

By storing this information in a static file, the MoveIt! motion planners can save a 

significant amount of time by not checking these link pairs for collisions whenever a 

new arm motion is planned. 

 11.11.2  The fake_controllers.yaml file 

To run MoveIt! in demo model, a set of fake joint trajectory controllers is used.  The 

fake controllers are configured in the file fake_controllers.yaml which for Pi 

Robot looks like this: 

controller_list:   - name: 
fake_right_arm_controller     
joints:  
- right_arm_shoulder_pan_joint  
- right_arm_shoulder_lift_joint  
- right_arm_shoulder_roll_joint  
- right_arm_elbow_flex_joint  
- right_arm_forearm_flex_joint  
- right_arm_wrist_flex_joint  

– name: fake_right_gripper_controller  
joints:  - 
right_gripper_finger_joint 

Note that we have a controller for each planning group which in this case includes the 

right arm and the gripper.  We will learn more about this file later in the chapter when 

dealing with real controllers so for now it is enough to notice that each fake controller 

simply lists the set of joints it controls. 
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The MoveIt! fake controllers take the joint configurations computed by the motion 

planners and simply republish them on the /joint_states topic.  In other words,  if a 

particular joint trajectory for the arm is computed by the motion planner, the fake 

controller for the arm updates the joint positions on the /joint_states topic with the 

values computed for each point along the trajectory.  If we were using a real joint 

controller, the computed trajectory would be sent to the controller to be rendered as 

servo commands that move the arm in the desired way.  The /joint_states topic 

would then reflect the actual motions that result, and how well the arm actually moves 

depends on the details of the controller and the physics of the arm. 

 11.11.3  The joint_limits.yaml file 

As we know from the chapter on URDF models, the range of each joint can be restricted 

by defining upper and lower position limits.  The velocity of a joint can also be limited 

in the URDF file using the vlimit parameter.  The MoveIt! Setup Assistant creates the 

joint_limits.yaml configuration file that sets the maximum velocity for each joint 

based on any vlimit values found in the original URDF file.  It also includes 

parameters for setting maximum joint acceleration.  Here are the first two joints in the 

joint_limits.yaml file for Pi Robot: 

joint_limits:   
right_arm_shoulder_pan_joint:     
has_velocity_limits: true     
max_velocity: 3.14     
has_acceleration_limits: false     
max_acceleration: 0 

  right_arm_shoulder_lift_joint:     
has_velocity_limits: true     
max_velocity: 3.14     
has_acceleration_limits: false     
max_acceleration: 0 

The has_velocity_limits parameter is set to true if there is a velocity limit 

specified in the original URDF model.  The value for the maximum_velocity 

parameter is then taken from the URDF file.  The parameter 

has_acceleration_limits is set to false by default for each joint and the 

max_acceleration is set to 0. 

If you find that your robot's arm does not move quickly enough, try changing the 

parameters in this file.  We will see later how we can always slow down the motion even 

without making changes here.  But to get faster motion, these are the parameters to 

tweak.   Start by setting the has_acceleration_limits parameters to true and 
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setting the max_acceleration value to something greater than 0.  Start with low 

values like something in between 1.0 and 3.0.  After the changes, you will need to 

terminate any running move_group.launch file and then start it up again to load the 

new values. 

Finally, note that the underlying joint trajectory controller might also impose velocity 

limits of its own.  For example, as we learned in Chapter 5, the ArbotiX controller 

accepts a max_speed parameter for each joint and these values will override any values 

set in the joint_limits.yaml file. 

 11.11.4  The kinematics.yaml file 

MoveIt! profiles a numeric kinematics solver (KDL) that should work with any 

kinematic chain you define for your robot.  The kinematic parameters used with the 

solver are stored in the file kinematics.yaml that, like the other configuration files, 

is found in the config subdirectory of your robot's MoveIt! package.  Generally 

speaking, you won't have to touch this file since it is already customized for your robot.  

The file is loaded by the planning_context.launch file which in turn is run when 

launching your robot's move_group.launch file. 

The syntax of the kinematics.yaml file is fairly simple and assigns an IK plugin plus 

a few parameters for each planning group created when running the Setup Assistant.  

For a single-arm robot like Pi Robot, the file would look like this: 

right_arm:   kinematics_solver: 
kdl_kinematics_plugin/KDLKinematicsPlugin   
kinematics_solver_attempts: 3   
kinematics_solver_search_resolution: 0.005   
kinematics_solver_timeout: 0.05 

Recall that the name of the planning group (here called right_arm) as well as the 

kinematics solver and its parameters were chosen when running the Setup Assistant.  

There is usually no need to change these and if you do, it is usually better to re-run the 

Setup Assistant rather than editing the file manually. 

Here is another example kinematics.yaml file, this time for the PR2 which has two 

arms and telescoping torso: 

right_arm: 
  kinematics_solver: pr2_arm_kinematics/PR2ArmKinematicsPlugin   
kinematics_solver_attempts: 3   
kinematics_solver_search_resolution: 0.001   
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kinematics_solver_timeout: 0.05 right_arm_and_torso:   
kinematics_solver: kdl_kinematics_plugin/KDLKinematicsPlugin 
  kinematics_solver_attempts: 3   
kinematics_solver_search_resolution: 0.001 
  kinematics_solver_timeout: 0.05 
left_arm:   kinematics_solver: 
pr2_arm_kinematics/PR2ArmKinematicsPlugin 
  kinematics_solver_attempts: 3   
kinematics_solver_search_resolution: 0.001 
  kinematics_solver_timeout: 0.05 left_arm_and_torso:   
kinematics_solver: kdl_kinematics_plugin/KDLKinematicsPlugin   
kinematics_solver_attempts: 3   
kinematics_solver_search_resolution: 0.001   
kinematics_solver_timeout: 0.05 

In this case, the left and right arms use a custom kinematics solver created specifically 

for the PR2 that is much faster than the stock KDL solver.  Two additional planning 

groups are also defined which in include one arm and the torso.  These planning groups 

use the KDL solver. 

From the ROS Wiki we learn the following details regarding the parameters used above: 

• kinematics_solver:  

kdl_kinematics_plugin/KDLKinematicsPlugin: The KDL 

kinematics plugin wraps around the numerical inverse kinematics solver 

provided by the Orocos KDL package. 

◦ This is the default kinematics plugin currently used by MoveIt! 

◦ It obeys joint limits specified in the URDF (and will use the safety limits if 

they are specified in the URDF). 

• kinematics_solver_search_resolution: This specifies the resolution 

that a solver might use to search over the redundant space for inverse 

kinematics, e.g. using one of the joints for a 7 DOF arm specified as the 

redundant joint. 

• kinematics_solver_timeout: This is a default timeout specified (in 

seconds) for each internal iteration that the inverse kinematics solver may 

perform. A typical iteration (e.g. for a numerical solver) will consist of a 

random restart from a seed state followed by a solution cycle (for which this 

timeout is applicable). The solver may attempt multiple restarts - the default 

number of restarts is defined by the kinematics_solver_attempts parameter 

below. 
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• kinematics_solver_attempts: The number of random restarts that will be 

performed on the solver. Each solution cycle after the restart will have a 

timeout defined by the kinematics_solver_timeout parameter above. In general, 

it is better to set this timeout low and fail quickly in an individual solution 

cycle. 

While the default KDL kinematics solver will suffice for most of our applications, later 

in the chapter we will learn how to create a faster analytic solver for our arm using 

OpenRAVE.  An analytic solver is less likely to miss a valid solution than a numerical 

solver.  Furthermore, it tends to run much faster which can be critical if the arm is 

required to track a moving target. 

11.12 The move_group Node and Launch File 

The move_group node is at the heart of the MoveIt! engine.  The MoveIt! Setup 

Assistant creates a corresponding launch file called move_group.launch in the 

launch subdirectory of your robot's MoveIt! configuration package.  This launch file 

runs the main move_group node and loads a number of parameters and plugins which 

in turn cause the move_group node to activate a variety of topics and services to 

handle kinematics, the planning scene, collision checking, sensor input and joint 

trajectory control.  

Running the move_group.launch file is all that is required to have access to the full 

set of MoveIt! ROS topics and services.  It also enables you to interact with MoveIt! 

programmatically using either the Python or C++ API.  The Setup Assistant also creates 

a demo.launch file that runs the move_group.launch file with a set of fake joint 

controllers and a pre-configured RViz session.  This allows us to test the MoveIt! setup 

without having a real robot or even a simulator.  Let us turn to that next. 

11.13 Testing MoveIt! in Demo Mode 

The MoveIt! configuration package we just created includes a demo.launch file that 

will enable us to test the setup.  Run the following command to launch all the MoveIt! 

nodes and services in demo mode: 

$ roslaunch pi_robot_moveit_config demo.launch 

NOTE: If the demo launch file aborts, type Ctrl-C and try launching again.  If it 

continues to crash, the culprit is most likely RViz.  Turning off hardware acceleration 
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for RViz usually helps which can be done by issuing the following command before 

launching the demo.launch file: 

$ export LIBGL_ALWAYS_SOFTWARE=1 

If this solves the crashing problem, it might be a good idea to put the above command at 

the end of your ~/.bashrc file so it is run automatically in new terminal sessions. 

Once RViz successfully appears, you should see Pi Robot in the right panel and the 

Motion Planning panel on the left as shown below: 

 

Confirm or change the settings in RViz to match the following: 

• Global Option → Fixed Frame: base_footprint 

• Motion Planning →  Scene Robot → check Show Robot Visual 

• Motion Planning → Planning Request → Planning Group → right_arm 

• Motion Planning → Planning Request → check Query Start State 

• Motion Planning → Planning Request → check Query Goal State 
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• Motion Planning → Planned Path → check Show Robot Visual 

• Motion Planning → Planned Path → un-check Loop Animation 

• Motion Planning → Planned Path → un-check Show Trail 

• File → Save Config 

You can now try setting arm navigation goals for Pi Robot.  For a complete description 

of how to do this using interactive markers, see the Quick Start guide on the MoveIt! 

Wiki.  Below is a brief summary of the steps.  Note that by default, the starting 

configuration of the arm is shown in green while the goal configuration is colored 

orange. 

• Click on the Context tab in the Motion Planning panel and verify that Use 

Collision-Aware IK is checked as shown below: 
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• Next, click on the Planning tab in the Motion Planning panel and you should 

see the following screen: 

 

Click on Select Start State under the Query column.  Most of the time, you will 

simply leave this selected on <current> but you can also use the pull down menu 

to select a different starting configuration of the arm.  If you defined some named 

poses for the arm when running the Setup Assistant, they will be listed in the menu.  

You can also choose a random arm configuration.  When you have made your 

selection, click the Update button.  The starting configuration will appear as a 

green arm in RViz.  (If the starting configuration is <current>, the green color 

will probably be hidden underneath the normal display of the arm.)  You can also 

use the interactive markers at the end of the arm to set the start position using your 

mouse.  Note that when using the interactive markers, you do not click the Update 

button when you are finished positioning the arm. 

• Once you have your starting configuration set, click on Select Goal State under 

the Query column.  Use the pull down menu to select the goal configuration of 

the arm, then click the Update button.  The goal configuration will appear as an 

orange arm in RViz.  The image below indicates that we have selected the 

"straight_forward" configuration: 
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Alternatively, you can use the interactive markers on the orange colored arm to set 

the goal position.  As noted earlier, when using the interactive markers, you do not 

click the Update button when you are finished positioning the arm.  (You can also 

select a pre-defined pose, click Update, then tweak the pose with the interactive 

markers.) 

• When you are satisfied with the start and goal states, click on the Plan and 

Execute button.  The arm should move between the start and goal 

configurations. 

• You might find it instructive to choose a number of <random valid> states for 

the Goal State which will give you an idea of the range and types of trajectories 

to expect from your arm. 

To exit demo mode at any time, type Ctrl-C in the terminal window in which you ran 

the demo.launch file. 

 11.13.1  Exploring additional features of the Motion Planning plugin 

The RViz Motion Planning plugin has additional features that we do not have space to 

explore in this Volume.  For example, the Manipulation tab is designed to be connected 
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to an object detection pipeline so that one can run a "pick-and-place" operation from 

within the GUI.  While we won't attempt to set up the GUI in this way, we will cover 

the basics of pick-and-place later in the chapter using virtual target objects and then 

again in the next chapter with a real robot and real objects. 

The Scene Objects tab allow you to add mesh objects to the scene from local files or 

URLs and then store the result for later use.   One place to look for compatible mesh 

files is the Gazebo database at http://gazebosim.org/models.  For example, if you click 

on the model directory for bowl and then on the meshes subdirectory, you will find the 

mesh file bowl.dae.  Right-click on this file and copy the URL.  Then use the Import 

URL button in the Scene Objects tab and paste the URL into the pop-up box.  The 

bowl will appear in RViz and you can move it around with the interactive marks or the 

Position and Rotation sliders on the right.  You can also change the bowl's size with the 

Scale slider.  Add other objects in the same way and then click on the Export As Text 

button to save the scene to a text file.  You import this scene later on using the Import 

From Text button. 

The scene below was created by adding three meshes from the gazebosim.org site 

including a box, a bowl and a hammer.  The objects were then scaled and moved into 

position using the Scale slider and interactive markers on each object. 

 

The Stored Scenes and Stored States tabs work with a Mongo database that can be 

launched using the warehouse.launch file in your robot's MoveIt! configuration 

package.  To access the database first click the Connect button on the Context tab.  If 

the connection is successful, the Connect button will turn into a Disconnect button.   
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Scenes and robot states can then be saved in the database for later use. 

 11.13.2  Re-running the Setup Assistant at a later time 

Note that you can always re-run the Setup Assistant at a later time if you have made 

changes to your robot model or you want to make other modifications, such as adding 

more named poses.  Simply run the assistant with the command: 

$ roslaunch moveit_setup_assistant setup_assistant.launch 

Then click the button labeled Edit Existing MoveIt Configuration Package.  A file 

dialog box will open.  Navigate to your MoveIt! configuration directory, and click the 

Open button.  Then click the Load Files button.  Your current configuration will be 

loaded and you can make any changes you like.  When you are finished, click the 

Configuration Files tab on the left and then click the Generate Package button to save 

your changes. 

NOTE: Don't forget to recreate the static version of your robot's URDF file before 

rerunning the Setup Assistant if you make changes to any of your model's component 

Xacro/URDF files. 

 11.14  Testing MoveIt! from the Command Line 

To test the basic functionality of our robot arm, we can interact with MoveIt! from the 

command line using the moveit_commander_cmdline.py utility.  If you do not 

already have the MoveIt! demo.launch file running from earlier, bring it up now: 

$ roslaunch pi_robot_moveit_config demo.launch 

Next, un-check the boxes beside Query Start State and Query Goal State as follows: 

• Motion Planning → Planning Request → un-check Query Start State 

• Motion Planning → Planning Request → un-check Query Goal State 

With these settings we can more easily view the movement of the arm when sending 

motion commands to the MoveIt! motion planner. 

Now bring up the MoveIt! command line interface by running: 

$ rosrun moveit_commander moveit_commander_cmdline.py 
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You should be placed at the command prompt: 

Waiting for commands. Type 'help' to get a list of known commands.  

>  

All commands in MoveIt! operate on a move group as defined in the configuration files 

for the robot in use.  In the case of Pi Robot, first select the right_arm group with the 

use command: 

> use right_arm 

After a brief delay, you should see an output similar to the following and a new 

command prompt for the right_arm group: 

[ INFO] [1369528317.243702965]: Ready to take MoveGroup commands for 
group right_arm.  
OK right_arm>  

With the robot visible in RViz, let's begin by moving the arm to a random set of joint 

angles using the go rand command: right_arm> go rand 

MoveIt! will check the validity of the selected angles against the kinematic model of the 

arm.  The target pose will be considered invalid if (1) the selected joint angles fall 

outside the joint limits set in the model, (2) the arm would collide with another part of 

the robot such as the head or torso, or (3) the motion would cause the arm to strike any 

nearby objects.  (More on this later.)   If any of these checks fail, a message similar to 

the following will appear: 

[ INFO] [1369529066.236768000]: ABORTED: No motion plan found. No 
execution attempted.  
Failed while moving to random target [-0.785861312784 -0.777854562622  
-1.90569032181 -0.927753414307 -0.32391361976 0.711703415429]  

On the other hand, if the joint goal represents a reachable configuration of the arm, 

MoveIt! will plan a trajectory from the starting configuration to the target configuration 

and pass that trajectory on to the arm's trajectory controller.  The controller will then 

move the arm smoothly into the new position.  In this case, you will see an output like 

the following: 

right_arm> go rand  
Moved to random target [-1.33530406365 0.898460602916 0.184664419448  
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1.20867797686 0.171914381348 1.08589163089] 
right_arm>  

Try issuing the go rand command a few times to see how the arm responds to different 

target configurations. 

Let's explore a few of the other commands.  To see the current joint values and the pose 

of the end-effector, use the current command: 

right_arm> current 

The output should look something like this: 

joints = [0.0135323487558 0.544921628281 2.26598694909 0.598703264228  
-0.8361580286 
1.32167751045] 
right_gripper_link pose = 
[ header:   seq: 0   stamp:     
secs: 1369490199     nsecs: 
690589904   frame_id: odom 
pose:   position:     x: 
0.0117037066685     y: -
0.197628755962     z: 
0.537961695072   
orientation:  
    x: 0.182884025394     
y: 0.0589242746894     
z: -0.764116809095     
w: 0.615797746964 ]  
right_gripper_link RPY = [0.14494326196452958, 0.3597715164230441, -
1.7585397976479231]  

At the top of the output we see a list of the joint angles in radians.  The joints are listed 

in the same order as they are linked in the arm, starting at the shoulder and working 

toward the gripper.  Next comes the pose (position and orientation) of the end-effector  

(gripper) relative to the /odom reference frame.  At the end of the output is the 

orientation of the end-effector given in terms of roll, pitch and yaw (RPY) around the x, 

y and z axes respectively. 

To record the current configuration into a variable called 'c' use the command: 

right_arm> record c 

Remembered current joint values under the name c right_arm> 
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The goal joint values can now be tweaked using the appropriate index.  For example, to 

set the second joint value to 0.2, use the command: right_arm> c[1] = 0.2 

To set the goal to the changed configuration, use the command: right_arm> 

goal = c 

Finally, to move the arm to the new goal configuration, make sure the robot is visible in 

RViz, then send the goal to the arm using the command: right_arm> go goal 

Remember that the new goal may fail if it does not pass all the checks described earlier. 

If you defined one or more named poses in the Setup Assistant, you can use them in the 

Commander.  For Pi Robot, you can send the "resting", "straight_forward" or "wave" 

pose: 

right_arm> go resting 
right_arm> go straight_forward 
right_arm> go wave 

To see the other commands supported by the MoveIt! Commander, type help at the 

command prompt: right_arm> help 

Now that we know that MoveIt! is talking to the arm, it's time to make it do something 

useful. 

 11.15  Determining Joint Configurations and End Effector Poses 

Later on in the chapter, we will be writing our own Python nodes to set goal 

configurations for the arm or target poses for the end-effector.  For goal configurations 

we need to know the desired joint angles, and for end-effector poses, we need to know 

the target position and orientation of the end-effector (e.g. gripper).  These values are 

not always easy to guess or visualize so we need a method for obtaining them more 

accurately. 

One option is to use MoveIt! in demo mode together with the command line interface. 

Using the interactive markers in RViz, position the arm or end-effector the way you 
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want, then read off the resulting joint angles or end-effector pose using the current 

command in the MoveIt! command line interface as we did earlier. 

For example, suppose we have positioned the arm using the interactive markers in RViz 

as shown below and we want to get either the joint angles or end-effector pose so we 

can use it later as a goal in one of our programs. 

 

Simply bring up the MoveIt! command line interface, select the right_arm move 

group and issue the current command as follows: 

$ rosrun moveit_commander moveit_commander_cmdline.py 

> use right_arm 

right_arm> current 

And the output should be similar to the following: 

joints = [-0.395309951307 -1.03650332222 -2.40611416266 1.22550181669  
-1.11578483203 
0.829686311888] 
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right_gripper_link pose = 
[ header:   seq: 0   stamp:     
secs: 1401584103     nsecs: 
673882961   frame_id: /odom 
pose:   position:     x: 
0.130429148535     y: -
0.211274182496     z: 
0.849751498818   orientation:  
    x: 0.688193773223     
y: 0.000192406815258     
z: -0.000249462081726     
w: 0.725526864592 ]  
right_gripper_link RPY = [1.517993195677934, 0.0006225491696134483, -
9.715655858643511e-05]  

The joint angles are in the order they appear in the kinematic chain beginning with the 

shoulder pan joint, and the pose refers to the pose of the end-effector relative to the 

/odom frame.   (This works also for the /base_footprint frame because of the 

planar virtual joint we defined connecting the /odom frame and the 

/base_footprint frame in the MoveIt! Setup Assistant).  These numbers can be 

copied into your script and used as target joint angles or a target pose for the end-

effector. 

You can also determine the end-effector pose directly in RViz by expanding the Links 

tree under the Scene Robot and then expanding the right_gripper link to reveal its 

current position and orientation.  However, using the technique above yields both the 

joints angles and end-effector pose and does not require all that clicking in RViz. 

Finally, you can use the handy script called get_arm_pose.py found in the 

rbx2_arm_nav/scripts directory.  The script uses the MoveIt! API so the robot's 

move_group.launch file must already be running.  Run the script with the command: 

$ rosrun rbx2_arm_nav get_arm_pose.py 

The output includes the list of active joints and their current positions as well as the 

pose of the end-effector.  These values are in a format that allows them to be copy-and-

pasted into a script to be used as target values. 

 11.16  Using the ArbotiX Joint Trajectory Action Controllers 

While it is possible to test a lot of code in MoveIt!'s demo mode, we will get better 

results if we use a proper joint trajectory controller.  In Chapter 5 we learned how to 

configure the ArbotiX package to control both individual joints and joint chains that 
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make up an arm or a pan-and-tilt head.  In that chapter we did not go beyond the 

individual joint controllers.  Now we turn our attention to the multi-joint trajectory 

action controllers. 

Since we can run the ArbotiX node in fake mode, we can use the simulated ArbotiX 

controllers rather than MoveIt!'s fake controllers to test the programming samples 

presented in the rest of the chapter.  This approach has the additional advantage of 

allowing us to run nearly the same code with real servos later on. 

Before diving into the MoveIt! sample code, let's test the more basic function of the 

ArbotiX joint trajectory action controllers for the arm and head. 

 11.16.1  Testing the ArbotiX joint trajectory action controllers in simulation 

Recall that joint trajectory action controllers respond to messages of type  

FollowJointTrajectoryGoal which are a little too long and complex to 

comfortably publish manually on the command line.  So we will use a simple Python 

script instead to illustrate the process. 

The script is called trajectory_demo.py and it can be found in the rbx2_arm_nav/ 

scripts directory.  Before looking at the code, let's try it out.  

If you still have the MoveIt! demo.launch file running from an earlier session, 

terminate it now.  Then begin by launching the one-arm version of Pi Robot in fake 

mode (sim:=true): 

$ roslaunch rbx2_bringup pi_robot_with_gripper.launch sim:=true 

You should see the following output on the screen:  

process[arbotix-1]: started with pid [11850]  
process[right_gripper_controller-2]: started with pid [11853] 
process[robot_state_publisher-3]: started with pid [11859]  
[INFO] [WallTime: 1401976945.363225] ArbotiX being simulated.  
[INFO] [WallTime: 1401976945.749586] Started FollowController  
(right_arm_controller). Joints: ['right_arm_shoulder_pan_joint',  
'right_arm_shoulder_lift_joint', 'right_arm_shoulder_roll_joint',  
'right_arm_elbow_flex_joint', 'right_arm_forearm_flex_joint',  
'right_arm_wrist_flex_joint'] on C1  
[INFO] [WallTime: 1401976945.761165] Started FollowController  
(head_controller). Joints: ['head_pan_joint', 'head_tilt_joint'] on C2  

The key items to note are highlighted in bold above: the right gripper controller is 

started; the ArbotiX controller is running in simulation mode; and the joint trajectory 



 

 Arm Navigation using MoveIt! - 317 

action controllers (called Follow Controllers here) are started for the right arm and 

head. 

Next, bring up RViz with the arm_sim.rviz config file from the rbx2_arm_nav 

package: 

$ rosrun rviz rviz -d `rospack find rbx2_arm_nav`/config/arm_sim.rviz 

Now run the trajectory_demo.py script.  Note that we are not using MoveIt! at all 

at this point.  The script simply sends a pair of joint trajectory requests (one for the arm 

and one for the head) to the trajectory action controllers that were started by our launch 

file above.  If the controllers succeed in implementing the requested trajectories, the 

arm and head should move upward and to the right smoothly and at the same time: 

$ rosrun rbx2_arm_nav trajectory_demo.py _reset:=false _sync:=true 

To move the arm and head back to their original configurations, run the command with 

the reset parameter set to true: 

$ rosrun rbx2_arm_nav trajectory_demo.py _reset:=true _sync:=true 

To move the arm first and then the head, run the script with the sync parameter set to 

false: 

$ rosrun rbx2_arm_nav trajectory_demo.py _reset:=false _sync:=false 

Let's now take a look at the code. 

Link to source: trajectory_demo.py 
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1 #!/usr/bin/env python 
2 
3 import rospy 
4 import actionlib 
5 
6 from control_msgs.msg import FollowJointTrajectoryAction 
7 from control_msgs.msg import FollowJointTrajectoryGoal 
8 from trajectory_msgs.msg import JointTrajectory, JointTrajectoryPoint 
9 
10 class TrajectoryDemo(): 
11 def __init__(self): 
12 rospy.init_node('trajectory_demo') 
13         
14        # Set to True to move back to the starting configurations 15        

reset = rospy.get_param('~reset', False) 
16         
17        # Set to False to wait for arm to finish before moving head 18        

sync = rospy.get_param('~sync', True) 
19         
20 # Which joints define the arm? 
21 arm_joints = ['right_arm_shoulder_pan_joint', 
22 'right_arm_shoulder_lift_joint', 
23 'right_arm_shoulder_roll_joint',  
24 'right_arm_elbow_flex_joint', 
25 'right_arm_forearm_flex_joint', 
26 'right_arm_wrist_flex_joint'] 
27         
28 # Which joints define the head? 
29 head_joints = ['head_pan_joint', 'head_tilt_joint'] 
30         
31 if reset: 
32 # Set the arm back to the resting position 
33 arm_goal  = [0, 0, 0, 0, 0, 0] 
34             
35 # Re-center the head 
36 head_goal = [0, 0]  37        

else: 
38 # Set a goal configuration for the arm 
39 arm_goal  = [-0.3, -2.0, -1.0, 0.8, 1.0, -0.7] 
40             
41 # Set a goal configuration for the head 
42 head_goal = [-1.3, -0.1] 
43     
44 # Connect to the right arm trajectory action server 
45 rospy.loginfo('Waiting for right arm trajectory controller...') 
46         
47        arm_client =  
actionlib.SimpleActionClient('right_arm_controller/follow_joint_trajectory',  
FollowJointTrajectoryAction) 
48         
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49        arm_client.wait_for_server() 50         
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51        rospy.loginfo('...connected.') 
52         
53 # Connect to the head trajectory action server 
54 rospy.loginfo('Waiting for head trajectory controller...') 55     
56        head_client =  
actionlib.SimpleActionClient('head_controller/follow_joint_trajectory',  
FollowJointTrajectoryAction) 
57        
58        head_client.wait_for_server() 
59         
60        rospy.loginfo('...connected.')     
61     
62 # Create an arm trajectory with the arm_goal as the end-point 
63 arm_trajectory = JointTrajectory() 
64 arm_trajectory.joint_names = arm_joints 
65 arm_trajectory.points.append(JointTrajectoryPoint()) 
66 arm_trajectory.points[0].positions = arm_goal 
67 arm_trajectory.points[0].velocities = [0.0 for i in arm_joints] 
68 arm_trajectory.points[0].accelerations = [0.0 for i in arm_joints] 69        

arm_trajectory.points[0].time_from_start = rospy.Duration(3.0) 70     
71 # Send the trajectory to the arm action server 
72 rospy.loginfo('Moving the arm to goal position...') 
73         
74 # Create an empty trajectory goal 
75 arm_goal = FollowJointTrajectoryGoal() 
76         
77        # Set the trajectory component to the goal trajectory created above 78        

arm_goal.trajectory = arm_trajectory 
79         
80 # Specify zero tolerance for the execution time 
81 arm_goal.goal_time_tolerance = rospy.Duration(0.0) 82     
83 # Send the goal to the action server 
84 arm_client.send_goal(arm_goal) 
85         
86 if not sync: 
87 # Wait for up to 5 seconds for the motion to complete 88            

arm_client.wait_for_result(rospy.Duration(5.0)) 
89         
90 # Create a head trajectory with the head_goal as the end-point 
91 head_trajectory = JointTrajectory() 
92 head_trajectory.joint_names = head_joints 
93 head_trajectory.points.append(JointTrajectoryPoint()) 
94 head_trajectory.points[0].positions = head_goal 
95 head_trajectory.points[0].velocities = [0.0 for i in head_joints] 
96 head_trajectory.points[0].accelerations = [0.0 for i in head_joints] 97        

head_trajectory.points[0].time_from_start = rospy.Duration(3.0) 98     
99 # Send the trajectory to the head action server 
100 rospy.loginfo('Moving the head to goal position...') 
101         
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102 head_goal = FollowJointTrajectoryGoal() 
103 head_goal.trajectory = head_trajectory 
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104        head_goal.goal_time_tolerance = rospy.Duration(0.0) 
105     
106 # Send the goal 
107 head_client.send_goal(head_goal) 
108         
109 # Wait for up to 5 seconds for the motion to complete  
110 head_client.wait_for_result(rospy.Duration(5.0)) 
111         
112        rospy.loginfo('...done') 

Let's break this down line by line: 
6 from control_msgs.msg import FollowJointTrajectoryAction 
7 from control_msgs.msg import FollowJointTrajectoryGoal 
8 from trajectory_msgs.msg import JointTrajectory, JointTrajectoryPoint 

First we need to import a number of message and action types for use with trajectories.   

We have already met the FollowJointTrajectoryAction action and    

FollowJointTrajectoryGoal message earlier in the chapter.  You will recall that 

the key component of these objects is the specification of a joint trajectory in terms of 

joint positions, velocities, accelerations and efforts.   We therefore also need to import 

the JointTrajectory and JointTrajectoryPoint message types. 

14 # Set to True to move back to the starting configurations 
15 reset = rospy.get_param('~reset', False) 
16         
17 # Set to False to wait for arm to finish before moving head 
18 sync = rospy.get_param('~sync', True) 

The reset parameter allows us to move the arm and head back to their starting 

positions.  The sync parameter determines whether we run the arm and head 

trajectories simultaneously or one after the other. 

20 # Which joints define the arm? 
21 arm_joints = ['right_arm_shoulder_pan_joint', 
22 'right_arm_shoulder_lift_joint', 
23 'right_arm_shoulder_roll_joint',  
24 'right_arm_elbow_flex_joint', 
25 'right_arm_forearm_flex_joint', 
26 'right_arm_wrist_flex_joint'] 
27         
28 # Which joints define the head? 
29 head_joints = ['head_pan_joint', 'head_tilt_joint']       

Next we create two lists containing the joint names for the arm and head respectively.   

We will need these joint names when specifying a trajectory goal. 
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31 if reset: 
32 # Set the arm back to the resting position 
33 arm_goal  = [0, 0, 0, 0, 0, 0] 
34             
35            # Re-center the head 36            

head_goal = [0, 0]       37        

else: 
38 # Set a goal configuration for the arm 
39 arm_goal  = [-0.3, -2.0, -1.0, 0.8, 1.0, -0.7] 
40             
41 # Set a goal configuration for the head 
42 head_goal = [-1.3, -0.1] 

Here we define two goal configurations in terms of joint positions, one for the arm and 

one for the head.  There is nothing special about these particular values and you can try 

other joint angles as you like.  However, remember that the joint positions are listed in 

the same order as the joint names defined above.  If the reset parameter is set to True 

on the command line, then the goal positions are set back to their neutral positions with 

the arm hanging straight down and the head centered. 

47        arm_client =  
actionlib.SimpleActionClient('right_arm_controller/follow_joint_trajectory',  
FollowJointTrajectoryAction) 
48         
49        arm_client.wait_for_server()       

Next we create a simple action client that connects to the joint trajectory action server 

for the right arm.  Recall that the namespace for this controller was defined in the 

configuration file for the arbotix controllers using the action_name parameter. 

56        head_client =  
actionlib.SimpleActionClient('head_controller/follow_joint_trajectory',  
FollowJointTrajectoryAction) 
57        
58        head_client.wait_for_server()         

And here we do the same for the head trajectory action server.  We can now use the 

arm_client and head_client objects to send trajectory goals to these two joint 

groups. 

62 # Create an arm trajectory with the arm_goal as a single end-point 
63 arm_trajectory = JointTrajectory() 
64 arm_trajectory.joint_names = arm_joints 
65 arm_trajectory.points.append(JointTrajectoryPoint()) 
66 arm_trajectory.points[0].positions = arm_goal 
67 arm_trajectory.points[0].velocities = [0.0 for i in arm_joints] 
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68 arm_trajectory.points[0].accelerations = [0.0 for i in arm_joints] 
69 arm_trajectory.points[0].time_from_start = rospy.Duration(3.0) 

To create a joint trajectory goal for the arm, we are actually going to use just a single 

point (joint configuration); namely, the goal positions we stored earlier in the 

arm_goal variable.  In other words, we are going to define the trajectory by 

specifying only its end point.  The reason we can get away with this is that a joint 

trajectory action server will interpolate additional joint configurations in between the 

starting configuration and the goal configuration we send it.  While it is certainly 

possible to specify additional arm configurations along the way, why not let the action 

server do the work for us? 

Line 63 above creates an empty JointTrajectory object.  In Line 64 we fill in the 

joint names for this trajectory with the names of the arm joints we enumerated earlier 

and stored in the variable arm_joints.  Recall that a joint trajectory consists of an 

array (or list in Python) of trajectory points.  So in Line 65 we append an empty 

JointTrajectoryPoint that we will fill in with our goal configuration.  This point 

has index 0 in the list of trajectory points.  In Line 66, we set the position values for this 

point to our goal positions as stored in the arm_goal variable.  We then set the 

velocities and accelerations to 0.0 for each joint since this is the end point for our 

trajectory so the arm will be stopped.  Finally, in Line 69 we set the 

time_from_start for this point to be 3.0 seconds.  This means we want the 

trajectory to pass through this point 3 seconds after starting the trajectory.  But since 

this is the end-point of the trajectory, then it also means we want the entire trajectory to 

execute in about 3 seconds. 

With our single-point goal trajectory created, we are ready to send it to the action 

server: 

74 # Create an empty trajectory goal 
75 arm_goal = FollowJointTrajectoryGoal() 
76         
77        # Set the trajectory component to the goal trajectory created above 78        

arm_goal.trajectory = arm_trajectory 
79         
80 # Specify zero tolerance for the execution time 
81 arm_goal.goal_time_tolerance = rospy.Duration(0.0) 82     
83 # Send the goal to the action server 
84 arm_client.send_goal(arm_goal) 
85         
86 if not sync: 
87 # Wait for up to 5 seconds for the motion to complete  
88 arm_client.wait_for_result(rospy.Duration(5.0)) 

In Line 75 we create an empty FollowJointTrajectoryGoal message.  Then in 

Line 78 we set the goal's trajectory component to the arm trajectory we just created 
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above.  In Line 81 we state that we want the trajectory to finish on time, which was 3.0 

seconds according to our time_from_start setting.  If it is OK for the arm to reach 

its destination a little later, you can increase the tolerance here.  Line 84 sends the 

actual trajectory goal to the action server using the send_goal() method on the 

arm_client object.  Finally, if we are not running the arm and head trajectories at the 

same time, Line 88 waits up to 5 seconds for the trajectory to finish or terminate with 

an error. 

The rest of the script simply repeats the procedure for the head trajectory. 

There are a few things worth noting about the trajectories generated by the script: 

• Even though we only specified a single trajectory point (the ending 

configuration for either the arm or head joints), the arbotix joint trajectory 

action controller created intermediate joint configurations thereby enabling the 

arm or head to move smoothly between the starting and ending configurations. 

• Each joint (either in the arm or the pan-and-tilt head) stops moving at the same 

time. You can confirm this visually by watching the fake robot in RViz or you 

can use rqt_plot to test it graphically.  For example, the following command 

will plot the joint velocities for the head_pan and head_tilt joints over the 

course of the motion: 

$ rqt_plot /joint_states/velocity[1]:velocity[7]  

The graph below shows the pan and tilt joint velocities while running the 

trajectory_demo.py script: 
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Note how the motions of the two joints begin and end at the same time. 

• Recall that we set the time_from_start for both the arm and head 

trajectories to be 3 seconds.  In the figure above, the numbers along the x-axis 

represent time in seconds.  You can therefore see that the head trajectory took 

just a little over 3 seconds. 

 11.16.2  Testing the ArbotiX joint trajectory controllers with real servos 

For an arm configured exactly like Pi Robot's, the trajectory_demo.py script can be 

run on the real servos without modification.  However, since not everyone has access to 

a real Dynamixel arm, let's test the simpler case of a pan-and-tilt head. 

The script head_trajectory_demo.py in the rbx2_dynamixels/scripts 

directory is essentially the same as the trajectory_demo.py script that we just 

examined but only includes the code relevant to the head trajectory.  Before running the 

script, we have to connect to the real servos.  Terminate any fake or real Dynamixel 

related launch files you might already have running and bring up the head-only version 

of Pi Robot, or use your own launch file if you have one: 

$ roslaunch rbx2_bringup pi_robot_head_only.launch sim:=false 

Note how we set the sim argument to false in the command above. 
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Assuming your servos are detected properly by the arbotix driver,  run the head 

trajectory script with the reset parameter set to false: 

$ rosrun rbx2_dynamixels head_trajectory_demo.py _reset:=false 

The head should rotate smoothly to the right (clockwise) and look up and it should take 

about 3 seconds to execute the trajectory.  Re-center the servos again, but this time with 

a duration of 10 seconds: 

$ rosrun rbx2_dynamixels head_trajectory_demo.py _reset:=true 
_duration:=10.0 

If your robot has a multi-jointed arm like Pi Robot's, you can try the  

trajectory_demo.py scripts as we did with the fake robot.  Of course, you will need 

to modify the joint names and position values in the script assuming your arm 

configuration is different than Pi's. 

Now that we have tested the basic function of the arbotix joint trajectory controllers, 

we are ready to configure MoveIt! to work with them. 

 11.17  Configuring MoveIt! Joint Controllers 

There are two parts to setting up real controllers with MoveIt:  (1) configuring the lower 

level joint trajectory controller that is used with with your particular hardware (e.g. 

Dynamixel servos);  (2) configuring the appropriate MoveIt! controller plugin that 

provides a more abstract connection between your physical controller and the MoveIt! 

API.  (You can find a more in-depth overview on the MoveIt! Wiki.) 

We have already learned how the ArbotiX package provides a joint trajectory action 

controller to use with Dynamixel servos.  This controller uses a ROS   

FollowJointTrajectoryAction action to accept a desired joint trajectory and 

ensure that it is followed within a given set of tolerances.  Fortunately, MoveIt! already 

includes a controller plugin called the moveit_simple_controller_manager that works 

with the FollowJointTrajectoryAction interface.  It is also compatible with the  

GripperCommandAction action used by the ArbotiX package to control a variet of  

robot grippers.  This means all we need to do is provide a link between MoveIt!'s 

controller configuration and the topics and action names used by the ArbotiX package. 

A good reference for configuring MoveIt! joint controllers can be found on the MoveIt! 

controller configuration wiki page.  We will provide a brief summary here. 

Interfacing MoveIt! with real controllers requires these two steps:  
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• Creating a controllers.yaml file in the config subdirectory of the MoveIt! 

configuration directory for your robot. 

• Creating a controller manager launch file that runs the simple MoveIt controller 

manager plugin and loads the parameters from the controllers.yaml file. 

 11.17.1  Creating the controllers.yaml file 

The controllers.yaml file for Pi Robot looks like this: 
controller_list: 
- name: right_arm_controller    action_ns: follow_joint_trajectory     type: 
FollowJointTrajectory     default: true     joints: 
- right_arm_shoulder_pan_joint 
- right_arm_shoulder_lift_joint 
- right_arm_shoulder_roll_joint 
- right_arm_elbow_flex_joint 
- right_arm_forearm_flex_joint 
- right_arm_wrist_flex_joint  - name: right_gripper_controller     action_ns: 
gripper_action     type: GripperCommand     default: true     joints: 
- right_gripper_finger_joint 

As you can see, this file lists a controller for each of the MoveIt! planning groups we 

defined using the Setup Assistant.  In Pi's case, we have one for the right_arm group 

and one for the right_gripper group.  For each group, the file lists a name for the 

controller, the namespace it operates in, the type of ROS action it implements, whether 

or not it is the default controller for this group (almost always set to true) and the list 

of joints in that group. 

Let's break this down for each of our two planning groups.  For the right arm we have: 

name: right_arm_controller 
action_ns: follow_joint_trajectory 

These two parameters are taken together and specify that the name of the ROS topic that 

will accept commands for this controller is called  

/right_arm_controller/follow_joint_trajectory.  To fully understand what 

this means, we need the next parameter: 

type: FollowJointTrajectory 
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The type parameter indicates that the arm will be controlled using a ROS 

FollowJointTrajectory action.  You can view the full definition of a 

FollowJointTrajectory action using the command: 

$ rosmsg show control_msgs/FollowJointTrajectoryAction | less 

which produces a rather long output beginning with: 

control_msgs/FollowJointTrajectoryActionGoal action_goal  
  std_msgs/Header header     
uint32 seq     time stamp     
string frame_id   
actionlib_msgs/GoalID goal_id  
    time stamp     
string id  
  control_msgs/FollowJointTrajectoryGoal goal     
trajectory_msgs/JointTrajectory trajectory  
      std_msgs/Header 
header         uint32 seq         
time stamp         string 
frame_id       string[] 
joint_names  
      trajectory_msgs/JointTrajectoryPoint[] points  
        float64[] positions         
float64[] velocities         
float64[] accelerations         
float64[] effort         
duration time_from_start     ... 

This first part of the message definition shows us the essence of what we need to know: 

namely, that controlling the arm requires the specification of a joint trajectory which in 

turn consists of an array of  positions, velocities, accelerations and efforts at each point 

along the way for each joint in the arm.  The parameter time_from_start specifies 

the desired timing of each joint configuration along the trajectory relative to the time  

stamp in the header. 

Putting it all together, MoveIt! expects our right_arm planning group to be controlled 

by FollowJointTrajectoryAction messages published on the  

/right_arm_controller/follow_joint_trajectory action topics.  This in 

turns means that our actual joint controller for the right arm must implement a ROS 

action server that consumes these types of messages and implements a callback to map 

FollowJointTrajectoryGoal messages into actual joint trajectories.  Both the 

arbotix_ros and dynamixel_motor packages provide action servers that work with 

Dynamixel servos. 
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Turning now to the right_gripper group we have: 

name: right_gripper 
action_ns: gripper_action 
type: GripperCommand 

Gripper control is much simpler than controlling the rest of the arm as it typically 

amounts to a simple squeezing of one or two finger joints activated by one or two 

servos.  From the three parameters listed above, MoveIt! expects the gripper to be  

controlled by GripperCommandAction goals sent to the topic 

/right_gripper/gripper_action.  To see the first part of the 

GripperCommandAction definition, run the command: $ rosmsg 

show GripperCommandAction | less 

which should produce an output beginning with the lines:  

control_msgs/GripperCommandActionGoal action_goal  
  std_msgs/Header header     
uint32 seq     time stamp     
string frame_id   
actionlib_msgs/GoalID goal_id  
    time stamp     
string id  
  control_msgs/GripperCommandGoal goal     
control_msgs/GripperCommand command  
      float64 position       
float64 max_effort    ... 

Near the bottom of the output above we see that the gripper goal is given as a simple 

float position value specifying the desired distance between the fingers, and a 

max_effort for how hard to squeeze. 

A real gripper controller must therefore define an action server that can consume 

GripperCommandGoal messages and translate the desired finger position(s) into 

rotation angles of the attached servos. 

 11.17.2  Creating the controller manager launch file 

In addition to the controllers.yaml file, we also have to create a launch file for the 

overall MoveIt! controller manager.  This file lives in the launch subdirectory of the 

robot's MoveIt! package and is given the name:  
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robot_name_moveit_controller_manager.launch.xml.  So in Pi Robot's case, 

we create a file called pi_robot_moveit_controller_manager.launch.xml.  It's 

contents looks like this: 

<launch> 
  <!-- Set the param that trajectory_execution_manager needs to find the 
controller plugin --> 
  <arg name="moveit_controller_manager"  
default="moveit_simple_controller_manager/MoveItSimpleControllerManager" /> 
  <param name="moveit_controller_manager" value="$(arg 
moveit_controller_manager)"/> 

  <!-- load controller_list --> 
  <rosparam file="$(find pi_robot_moveit_config)/config/controllers.yaml"/> 
</launch> 

This launch file sets the parameter moveit_controller_manager to the generic 

manager included with the MoveIt! plugin called  

MoveItSimpleControllerManager.   It then reads in our controllers.yaml file 

to set the individual controller parameters we have already defined. 

Now that we have the higher level MoveIt! controller interface configured, let's turn to 

the joint action trajectory controllers we will use with real servos. 

 11.18  The MoveIt! API 

The primary MoveIt! API is referred to as the Move Group Interface and is available 

in C++  and Python.  The examples in this book use the Python API but the same 

concepts apply to the C++ version.  At the time of this writing, the Python API is still 

incomplete but does include the most important functions for our purposes. 

The general pattern to most of our nodes is the same: 

• connect to the planning group we want to control—e.g. right_arm 

• set either a joint space goal or a Cartesian goal (position and orientation) for the 

end-effector 

• optionally set constraints on the motion 

• ask MoveIt! to plan a trajectory to the goal 

• optionally modify the trajectory such as changing its speed 
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• execute the planned trajectory 

Let's begin with a node that uses forward kinematics to reach a goal in joint space. 

 11.19  Forward Kinematics: Planning in Joint Space 

Sometimes you already know the joint positions you want the arm to assume.  MoveIt! 

makes it easy to move the arm into the desired configuration.  The following four lines 

of Python are enough to move our 6-DOF arm into a given joint configuration: 
1    right_arm = MoveGroupCommander("right_arm") 
2    joint_positions = [0.2, -0.5, 1.57, -1.0, -0.4, 0.5] 
3    right_arm.set_joint_value_target(joint_positions) 
4    right_arm.go() 

The first line defines the move group to be the right arm.  Then we define a list of joint 

positions (radians for revolute or continuous joints, meters for prismatic joints).  The 

order of the joints is the same as the link order in the arm, starting with the base of the 

arm.  We then use the set_joint_value_target() function to set the target angles 

to the motion planner followed by the go() function to execute the plan. 

To get us started,  take a look at the script moveit_fk_demo.py in the directory 

rbx2_arm_nav/scripts.  This script performs the following steps: 

• moves the arm to the named configuration called "resting" that was defined in 

the Setup Assistant and stored in the SRDF file 

• opens the gripper to a neutral position 

• moves the arm to a joint configuration defined by setting target angles for each 

joint 

• assigns the target configuration a name ("saved_config") so we can easily use it 

again later 

• closes the gripper as if grasping a small object 

• moves the arm to the named configuration called "straight_forward" that was 

defined in the Setup Assistant and stored in the SRDF file 

• moves the arm to the "saved_config" configuration saved earlier 

• opens the gripper as if to release an object 
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• returns the arm to the named configuration called "resting" that was defined in 

the Setup Assistant and stored in the SRDF file 

• sets the gripper back to a neutral position 

Before looking at the code, let's try it out with Pi Robot in the ArbotiX simulator.  Be 

sure to start with a clean slate so first terminate any MoveIt! launch files or RViz 

sessions you might already have running. 

Next bring up the simulated version of Pi Robot using the ArbotiX joint controllers: 

$ roslaunch rbx2_bringup pi_robot_with_gripper.launch sim:=true 

Note how we run the launch file with the sim argument set to true.  Later on we will 

use the same launch file with real servos by simply setting the sim argument to false.  

After running the launch file you should see the following output: 

  
process[arbotix-1]: started with pid [11850]  
process[right_gripper_controller-2]: started with pid [11853] 
process[robot_state_publisher-3]: started with pid [11859]  
[INFO] [WallTime: 1401976945.363225] ArbotiX being simulated.  
[INFO] [WallTime: 1401976945.749586] Started FollowController  
(right_arm_controller). Joints: ['right_arm_shoulder_pan_joint',  
'right_arm_shoulder_lift_joint', 'right_arm_shoulder_roll_joint',  
'right_arm_elbow_flex_joint', 'right_arm_forearm_flex_joint',  
'right_arm_wrist_flex_joint'] on C1  
[INFO] [WallTime: 1401976945.761165] Started FollowController  
(head_controller). Joints: ['head_pan_joint', 'head_tilt_joint'] on C2  

The key items to note are highlighted in bold above: the right gripper controller is 

started; the arbotix driver is running in simulation mode; and the trajectory 

controllers for the right arm and head have been launched. 

Next, we need to run Pi Robot's move_group.launch file created by the MoveIt! 

Setup Assistant.  As we know from earlier in the chapter, this launch file brings up all 

the nodes and services required to interact with the robot using the MoveIt! API: 

$ roslaunch pi_robot_moveit_config move_group.launch 

If RViz is already running, shut it down then bring it up again using the 

arm_nav.rviz config file from the rbx2_arm_nav package: 

$ rosrun rviz rviz -d `rospack find rbx2_arm_nav`/config/arm_nav.rviz 
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Finally, open another terminal and run the forward kinematics demo script while 

keeping an eye on RViz: 

$ rosrun rbx2_arm_nav moveit_fk_demo.py 

You should see the robot's arm and gripper move to the various joint poses defined in 

the script. 

Let's now look at the code. 

Link to source: moveit_fk_demo.py 
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1 #!/usr/bin/env python 
2 
3 import rospy, sys 
4 import moveit_commander 
5 from control_msgs.msg import GripperCommand 
6 
7 class MoveItDemo: 
8 def __init__(self): 
9 # Initialize the move_group API 
10 moveit_commander.roscpp_initialize(sys.argv)11 
12 # Initialize the ROS node 
13 rospy.init_node('moveit_demo', anonymous=True) 
14         
15 # Set three basic gripper openings 
16 GRIPPER_OPEN = [0.04] 
17 GRIPPER_CLOSED = [-0.03] 
18 GRIPPER_NEUTRAL = [0.01] 
19                 
20 # Connect to the right_arm move group 
21 right_arm = moveit_commander.MoveGroupCommander('right_arm') 
22         
23 # Connect to the right_gripper move group 
24 right_gripper = moveit_commander.MoveGroupCommander('right_gripper') 
25                 
26 # Get the name of the end-effector link 
27 end_effector_link = right_arm.get_end_effector_link() 
28         
29 # Display the name of the end_effector link 
30 rospy.loginfo("The end effector link is: " + str(end_effector_link)) 
31                 
32        # Start the arm in the "resting" configuration stored in the SRDF file 

33        right_arm.set_named_target("resting") 
34         
35 # Plan a trajectory to the goal configuration 
36 traj = right_arm.plan() 
37         
38 # Execute the planned trajectory 
39 right_arm.execute(traj) 
40 
41 # Pause for a moment 
42 rospy.sleep(1)      
43                     
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44        # Set the gripper to a neural position using a joint value target 45        

right_gripper.set_joint_value_target(GRIPPER_NEUTRAL) 
46         
47 # Plan and execute a trajectory to the goal configuration 
48 right_gripper.go() 
49 rospy.sleep(1)  
50                 
51        # Set target joint values for the arm: joints are in the order they  52        

# appear in the kinematic tree. 
53        joint_positions = [-0.0867, 1.274, 0.02832, 0.0820, -1.273, -0.003] 54 
55        # Set the arm's goal configuration to the be the joint positions 56        

right_arm.set_joint_value_target(joint_positions) 
57                 
58 # Plan and execute a trajectory to the goal configuration 
59 right_arm.go() 
60 
61 # Pause for a moment 
62 rospy.sleep(1)  
63     
64 # Save this configuration for later 
65 right_arm.remember_joint_values('saved_config', joint_positions) 
66         
67        # Set the gripper target to a partially closed position 68        

right_gripper.set_joint_value_target(GRIPPER_CLOSED) 
69         
70 # Plan and execute the gripper motion 
71 right_gripper.go() 
72 rospy.sleep(1)  
73                 
74        # Set the arm target to the "straight_forward" pose from the SRDF file 

75        right_arm.set_named_target("straight_forward") 
76         
77 # Plan and execute the motion 
78 right_arm.go() 
79 rospy.sleep(1)  
80                  
81        # Set the goal configuration to the named configuration saved earlier 

82        right_arm.set_named_target('saved_config') 
83         
84 # Plan and execute the motion 
85 right_arm.go() 
86         
87 # Set the gripper to the open position 
88 right_gripper.set_joint_value_target(GRIPPER_OPEN)89 
90 # Plan and execute the motion 
91 right_gripper.go() 
92 rospy.sleep(1) 
93         
94 # Return the arm to the named "resting" pose stored in the SRDF file 
95 right_arm.set_named_target("resting") 
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96 right_arm.go()   
97         
98        # Return the gripper target to neutral position 
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99 right_gripper.set_joint_value_target(GRIPPER_NEUTRAL) 
100 right_gripper.go() 
101 
102 # Cleanly shut down MoveIt! 
103 moveit_commander.roscpp_shutdown() 
104         
105 # Exit the script 
106 moveit_commander.os._exit(0) 

     

Since this is our first MoveIt! script, let's take it line by line. 

4 import moveit_commander 

First we import the Python wrapper to the overall moveit_commander interface.  This 

will give us access to the functions and objects we need to control the robot's arm and 

gripper. 

5 from control_msgs.msg import GripperCommand 

To open or close the gripper, we need the GripperCommand message type from the 

control_msgs package. 

10        moveit_commander.roscpp_initialize(sys.argv) 

When running the MoveIt! Python API, this command initializes the underlying 

moveit_commander C++ system and should always be run near the top of your script. 

16 GRIPPER_OPEN = [0.04] 
17 GRIPPER_CLOSED = [-0.03] 
18 GRIPPER_NEUTRAL = [0.01] 

Here we set three basic gripper openings.  The values are in meters and specify the 

desired spacing in between the finger tips with 0.0 representing the half-way point.  It 

is up to the gripper controller to map the desired opening into joint angles using the 

geometry of the gripper. 

21        right_arm = moveit_commander.MoveGroupCommander('right_arm') 

The primary object we will use from the moveit_commander library is the 

MoveGroupCommander class for controlling a specific move group  (i.e. planning 

group) defined in the robot's SRDF configuration.  In the case of one-arm Pi Robot, we 

have a move group for the right arm and another for the right gripper.  Recall that we 

defined the names for the robot's planning groups when we ran the MoveIt! Setup 

Assistant.  Here we initialize the right arm group by passing its name to the 

MoveGroupCommander class. 
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24        right_gripper = moveit_commander.MoveGroupCommander('right_gripper') 

In a similar manner, we create the move group object for the right gripper. 

27        end_effector_link = right_arm.get_end_effector_link() 

Using the right_arm move group object, we can call a number of MoveIt! functions  

directly on the arm.  In the line above, we use the function 

get_end_effector_link() to get the name of the end effector link. 

30        rospy.loginfo("The end effector link is: " + str(end_effector_link)) 

And then we display the name on the terminal. 

33        right_arm.set_named_target("resting") 

Next we use the set_named_target() function to prepare the arm to move to the 

configuration called "resting" stored in the SRDF file.  This particular configuration has 

the arm hanging straight down.  Note that we haven't actually told the arm to move yet. 

36        traj = right_arm.plan() 

With a target configuration set, we now use the plan() function to compute a 

trajectory from the current configuration to the target configuration.  The plan() 

function returns a MoveIt! RobotTrajectory()object that includes a joint trajectory 

for moving the arm toward the goal.  We store this trajectory in the variable named 

traj. 

39        right_arm.execute(traj) 

Finally, we use the execute() command to actually move the arm along the planned 

trajectory.  Notice how we pass the pre-computed trajectory to the execute()function 

as an argument.  The job of actually implementing the trajectory is passed along to the 

underlying joint trajectory action controller which in our case is the arbotix 

controller.  

MoveIt! includes another command called go() that combines the plan() and 

execute() command into one.  So instead of using: 
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          traj = right_arm.plan()           
right_arm.execuite(traj) 

we can simply use : 

          right_arm.go() 

Notice how the go() command does not use the intermediary trajectory object.  While 

this simplifies the code, we sometimes want to modify the planned trajectory before 

executing it.  We will therefore usually use the go() command unless we need to apply 

some transformation to the trajectory before execution and in those cases, we will use 

plan() and execute(). 

45        right_gripper.set_joint_value_target(GRIPPER_NEUTRAL) 

Next we set a joint value target for the right gripper to the "neutral" position defined 

earlier in the script.  Note that we haven't commanded the gripper to move yet—we do 

that next: 

48        right_gripper.go() 

Here we use the go() command to plan and execute the gripper trajectory. 

53        joint_positions = [-0.0867, 1.274, 0.02832, 0.0820, -1.273, -0.003] 

Next we prepare to move the arm into a configuration defined by a specific set of 

positions for each joint.  First we set an array of joint positions, one for each of the six 

degrees of freedom of the arm.  The order of the joints is the same as the order in which 

they are linked together in the URDF model.  In the case of Pi Robot's arm, the order is: 

['right_arm_shoulder_pan_joint', 'right_arm_shoulder_lift_joint',  
'right_arm_shoulder_roll_joint', 'right_arm_elbow_flex_joint',  
'right_arm_forearm_flex_joint', 'right_arm_wrist_flex_joint']  

If you want to display the active joint names in the correct order as we have done above, 

or store their names in an array, you can use the get_active_joints() command for 

the planning group in question. For example, the following line would store the active  

joint names for the right_arm group in an array named 

right_arm_active_joints: 

 right_arm_active_joints = right_arm.get_active_joints() 
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With the desired joint configuration stored in the variable joint_positions, we are 

ready to set it as a goal configuration for the arm: 

56        right_arm.set_joint_value_target(joint_positions) 

Here we use the set_joint_value_target() function like we did with the gripper, 

only this time we are passing in values for six joints instead of one.  

59        right_arm.go() 

Plan and execute the arm motion. 

62        rospy.sleep(2) 

Pause for a moment before moving again. 

65        right_arm.remember_joint_values('saved_config', joint_positions) 

Here we use the remember_joint_values() function to store the values from the 

joint_positions array as a named configuration that we have called 'saved_config'.  

We will then use this named configuration later in the script to move the arm back to 

this position.  Note that instead of the fixed joint_positions array, use could read 

the current joint values using the function get_current_joint_values().  This 

means that at any time you would like to create a named configuration, you can use a 

pair of commands like the following: 

  current_positions = right_arm.get_current_joint_values()   
right_arm.remember_joint_values('named_target', current_positions) 

Note that named configurations created dynamically like this are not stored in the SRDF 

file and will only last as long as the script is running. 

68        right_gripper.set_joint_value_target(GRIPPER_CLOSED) 

Close the gripper as if grasping a small object. 

71        right_gripper.go() 

Plan and execute the gripper motion. 

74 # Set the arm target to the "straight_forward" pose from the SRDF file 
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75 right_arm.set_named_target("straight_forward") 
76         
77 # Plan and execute the motion 
78 right_arm.go() 

Set the arm configuration to the named "straight_forward" pose stored in the SRDF file 

and then plan and execute the motion. 

81 # Set the goal configuration to the named configuration saved earlier 
82 right_arm.set_named_target('saved_config') 
83         
84 # Plan and execute the motion 
85 right_arm.go() 

Recall that we stored one of the earlier arm configurations under the name  

'saved_config'.  Here we use the set_named_target() function to return to that 

pose. 

87 right_gripper.set_joint_value_target(GRIPPER_OPEN) 
88 right_gripper.go() 
89 rospy.sleep(1) 

Open the gripper as if letting go of an object. 

94 # Return the arm to the named "resting" pose stored in the SRDF file 
95 right_arm.set_named_target("resting") 
96 right_arm.go()   

Return the arm to the named "resting" pose. 

99 right_gripper.set_joint_value_target(GRIPPER_NEUTRAL) 
100 right_gripper.go() 

Set the gripper back to the neutral position. 

102 # Cleanly shut down MoveIt! 
103 moveit_commander.roscpp_shutdown() 
104         
105 # Exit the script 
106 moveit_commander.os._exit(0) 

Cleanly shut down both the moveit_commander and the script using a pair of utility 

commands.  It is a good idea to always end your scripts with these two commands. 
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 11.20  Inverse Kinematics: Planning in Cartesian Space 

Most of the time, we will not know the target joint angles ahead of time.  Instead, we 

will want to specify a target pose or trajectory for the robot's gripper or end-effector in 

normal Cartesian space and then let the IK solver figure out the arm's joint trajectory 

that will place the end-effector in the desired pose. 

MoveIt! allows us to plan an arm movement in any reference frame connected to the 

robot.  For example, suppose we want to position the gripper 20 cm (0.20 meters)  

forward of the center of the base, 10 cm (0.1 m) to the right of center line, and 85 cm 

(0.85 meters) above the ground.  Furthermore, we want the orientation of the gripper to 

be essentially horizontal.  Since the z-axis of the gripper frame points upward from the 

plane of the gripper, this means we can just use the unit quaternion for the orientation 

components.  The following code snippet would accomplish the task: 

 right_arm = MoveGroupCommander("right_arm") 

 end_effector_link = right_arm.get_end_effector_link() 

         
 target_pose = PoseStamped() 
 target_pose.header.frame_id = 'base_footprint'  target_pose.header.stamp = 

rospy.Time.now()  target_pose.pose.position.x = 0.20  target_pose.pose.position.y 
= -0.1  target_pose.pose.position.z = 0.85  target_pose.pose.orientation.x = 0.0  
target_pose.pose.orientation.y = 0.0  target_pose.pose.orientation.z = 0.0  
target_pose.pose.orientation.w = 1.0 

         
 right_arm.set_pose_target(target_pose, end_effector_link)  right_arm.go() 

In this code snippet we begin by connecting to the right arm move group.  We then get 

the name of the end-effector link that we will use later for setting its pose.  Next, we set 

the target pose of the end-effector as a PoseStamped message relative to the 

base_footprint frame.  Finally, we use the set_pose_target() function to set 

the desired end-effector pose. 

To see this in action, we will use the script moveit_ik_demo.py in the directory 

rbx2_arm_nav/scripts.  This script performs the following steps: 

• moves the arm to the named configuration called "resting" that was defined in 

the Setup Assistant and is stored in the SRDF file 

• sets the target pose described above for the end-effector relative to the 

base_footprint frame using the set_pose_target() function 
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• runs the go() command which uses the inverse kinematics of the arm to plan 

and execute a trajectory that places the end-effector in the desired pose 

• shifts the end-effector 5 cm to the right using the shift_pose_target() 

function with a position argument 

• rotates the gripper 90 degrees using the shift_pose_target() function with 

an orientation argument 

• stores this new pose of the end-effector using the get_current_pose() 

function so we can come back to it later 

• moves the arm to the named configuration called "wave" that was defined in the 

Setup Assistant and stored in the SRDF file 

• calls set_pose_target() on the pose saved earlier followed by the go() 

command to move the gripper back to the saved posed 

• returns the arm to the named configuration called "resting" that was defined in 

the Setup Assistant and stored in the SRDF file 

Before looking at the code, let's try it in the ArbotiX simulator.  If you don't already 

have the Pi Robot's launch file running from the previous section, fire it up now: 

$ roslaunch rbx2_bringup pi_robot_with_gripper.launch sim:=true 

If you don't already have the robot's move_group.launch file running, run it now as 

well: 

$ roslaunch pi_robot_moveit_config move_group.launch 

And if you don't have RViz running with the arm_nav.rviz config file, run the 

following command: 

$ rosrun rviz rviz -d `rospack find rbx2_arm_nav`/config/arm_nav.rviz 

Finally, run the inverse kinematics demo script: 

$ rosrun rbx2_arm_nav moveit_ik_demo.py 

You should see the robot's arm move to the various poses defined in the script as well as 

any messages displayed in the terminal window. 
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If you observe the terminal window where we ran the move_group.launch file, you 

will see messages regarding the number of planning attempts and the time it took to find 

a solution for each arm movement.  For example, the following messages are displayed 

when computing the IK solution required to move the arm from the initial resting 

position to the first pose: 

[ INFO] [1403875537.220921508]: No planner specified. Using default.  
[ INFO] [1403875537.221527386]: RRTConnect: Starting with 1 states  
[ INFO] [1403875537.734205788]: RRTConnect: Created 4 states (2 start +  
2 goal)  
[ INFO] [1403875537.734287309]: Solution found in 0.513139 seconds  
[ INFO] [1403875537.737509841]: Path simplification took 0.003135  
seconds [ INFO] [1403875537.745549132]: Received new trajectory 
execution service request... [ INFO] [1403875540.335332624]: 
Execution completed: SUCCEEDED 

The line highlighted in bold above indicates that it took over half a second to compute 

the IK solution using the generic KDL solver.  Typical solution times for different poses 

range from 0.15 to 0.6 seconds on my i5 laptop.  At the end the chapter we will learn 

to how to create a custom IK solver for the arm that reduces these computation times by 

a factor of 10 or more. 

Let's now look at the move_ik_demo.py script in detail. 

Link to source: moveit_ik_demo.py 

1 #!/usr/bin/env python 
2 
3 import rospy, sys 
4 import moveit_commander 
5 from moveit_msgs.msg import RobotTrajectory 
6 from trajectory_msgs.msg import JointTrajectoryPoint 7 
8 from geometry_msgs.msg import PoseStamped, Pose 
9 from tf.transformations import euler_from_quaternion, quaternion_from_euler 
10 
11 class MoveItDemo: 
12 def __init__(self): 
13 # Initialize the move_group API 
14 moveit_commander.roscpp_initialize(sys.argv) 
15         
16        rospy.init_node('moveit_demo') 
17                 
18 # Initialize the MoveIt! commander for the right arm 
19 right_arm = moveit_commander.MoveGroupCommander('right_arm') 
20         
21        right_arm.set_end_effector_link('right_gripper_link') 
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22         
23 # Get the name of the end-effector link 
24 end_effector_link = right_arm.get_end_effector_link() 
25                         
26 # Set the reference frame for pose targets 
27 reference_frame = 'base_footprint' 
28         
29 # Set the right arm reference frame accordingly 
30 right_arm.set_pose_reference_frame(reference_frame) 
31                 
32 # Allow replanning to increase the odds of a solution 
33 right_arm.allow_replanning(True) 
34         
35 # Allow some leeway in position (meters) and orientation (radians) 
36 right_arm.set_goal_position_tolerance(0.01) 
37 right_arm.set_goal_orientation_tolerance(0.1) 
38         
39 # Start the arm in the "resting" pose stored in the SRDF file 
40 right_arm.set_named_target("resting") 
41 right_arm.go() 
42 rospy.sleep(2) 
43                
44 # Set the target pose for the end-effector 
45 target_pose = PoseStamped() 
46 target_pose.header.frame_id = reference_frame 
47 target_pose.header.stamp = rospy.Time.now()      
48 target_pose.pose.position.x = 0.20 
49 target_pose.pose.position.y = -0.1 
50 target_pose.pose.position.z = 0.85 
51 target_pose.pose.orientation.x = 0.0 
52 target_pose.pose.orientation.y = 0.0 
53 target_pose.pose.orientation.z = 0.0 
54 target_pose.pose.orientation.w = 1.0 55 
56 # Set the start state to the current state 
57 right_arm.set_start_state_to_current_state() 
58         
59        # Set the goal pose of the end effector to the stored pose 60        

right_arm.set_pose_target(target_pose, end_effector_link) 
61         
62 # Plan a trajectory to the 

target pose 
63 traj = right_arm.plan()64 
65 # Execute the planned trajectory 
66 right_arm.execute(traj) 
67 
68 # Pause for a second 
69 rospy.sleep(1) 
70          
71 # Shift the end-effector to the right 10cm 
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72 right_arm.shift_pose_target(1, -0.1, end_effector_link) 
73 right_arm.go() 
74 rospy.sleep(1) 
75   
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76 # Rotate the end-effector 90 degrees 
77 right_arm.shift_pose_target(3, -1.57, end_effector_link) 
78 right_arm.go() 
79 rospy.sleep(1) 
80   
81 # Store this pose for later use 
82 saved_target_pose = right_arm.get_current_pose(end_effector_link) 
83           
84 # Move to the named pose "wave" 
85 right_arm.set_named_target("wave") 
86 right_arm.go() 
87 rospy.sleep(1) 
88           
89 # Go back to the stored target 
90 right_arm.set_pose_target(saved_target_pose, end_effector_link)91        

right_arm.go() 
92        rospy.sleep(1) 
93            
94 # Finish up in the resting position   
95 right_arm.set_named_target("resting") 
96 right_arm.go() 
97 rospy.sleep(2)       98 
99 # Shut down MoveIt! cleanly 
100 moveit_commander.roscpp_shutdown() 
101         
102 # Exit MoveIt! 
103 moveit_commander.os._exit(0) 104 
105if __name__ == "__main__": 

106    MoveItDemo() 

     

The first part of the script is similar to the moveit_fk_demo.py node so we will skip 

ahead to what is new. 

26 # Set the reference frame for pose targets 
27 reference_frame = 'base_footprint' 
28         
29 # Set the right arm reference frame accordingly 
30 right_arm.set_pose_reference_frame(reference_frame) 

It is a good idea to explicitly set the reference frame relative to which you will set pose 

targets for the end-effector.  In this case we use the base_footprint frame. 

33        right_arm.allow_replanning(True) 

If the allow_replanning() function is set to True, MoveIt! will try up to five 

different plans to move the end-effector to the desired pose.  If set to False, it will try 
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only one.  If it is especially important that the end-effector make it to the target pose, 

then set this to True. 

36 right_arm.set_goal_position_tolerance(0.01) 
37 right_arm.set_goal_orientation_tolerance(0.05) 

When asking the IK solver to come up with a solution for the desired end-effector pose, 

we can make the problem easier or harder by setting position and orientation tolerances 

that we are willing to accept on the final pose.  In the first line above we have set a 

fairly tight tolerance of 1.0 cm (0.01 meters) on the position of the end effector.  The 

second line sets an orientation tolerance of about 3 degrees.  Choose your tolerances to 

match the task at hand. 

45 target_pose = PoseStamped() 
46 target_pose.header.frame_id = reference_frame 
47 target_pose.header.stamp = rospy.Time.now()      
48 target_pose.pose.position.x = 0.20 
49 target_pose.pose.position.y = -0.1 
50 target_pose.pose.position.z = 0.85 
51 target_pose.pose.orientation.x = 0.0 
52 target_pose.pose.orientation.y = 0.0 
53 target_pose.pose.orientation.z = 0.0 
54 target_pose.pose.orientation.w = 1.0 

Here we set a target pose for the end-effector relative to the reference_frame we set 

earlier.  This particular pose has the gripper oriented horizontally and positioned 0.85 

meters off the ground, 0.10 meters to the right of the torso and 0.20 meters forward of 

the center of the base. 

57        right_arm.set_start_state_to_current_state() 

Before sending the target pose to the IK solver, it is a good idea to explicitly set the start 

state to the current state of the arm. 

57        right_arm.set_pose_target(target_pose, end_effector_link) 

Next we use the set_pose_target() function to set the target pose for the 

endeffector.  This function takes a pose as the first argument and the name of the end 

effector link which we stored earlier in the script in the variable end_effector_link.  

As with the set_joint_value_target() function we used in the FK demo, the 

set_pose_target() function does not initiate planning or cause the arm to move so 

we take care of that next.  
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62 # Plan a trajectory to the 

target pose 
63 traj = right_arm.plan()64 
65 # Execute the planned trajectory 
66 right_arm.execute(traj) 

First we call the plan() function to get back a trajectory that will move the end-

effector to the pose set by the previous set_pose_target() statement.  Then we call 

the execute() function on the returned trajectory.  If the planner or IK solver fails to 

find a valid trajectory, the variable traj will be empty (None) and the execute() 

command will fail with a message similar to: 

[ WARN] [1398085882.470952540]: Fail: ABORTED: No motion plan found. No 
execution attempted. 

The planner will attempt to find a solution up to 5 times if the allow_replanning() 

function is set to True earlier in the script.  Otherwise it will abort entirely after the first 

failed attempt.  If you want to test to see if all plans have failed, simply check that the 

variable traj is not None before running execute(). 

71 # Shift the end-effector to the right 5cm 
72 right_arm.shift_pose_target(1, -0.05, end_effector_link) 

Occasionally it is useful to shift the position or orientation of the end-effector without 

specifying an entirely new pose.  For example, perhaps the gripper is already nearly in  

the correct pose to pick up an object but we want to shift it a little to the right.  The 

shift_pose_target() command shown above attempts to move the end-effector 

0.05 meters (5 cm) to the right of the current location.  The first argument determines 

which axis (translation or rotation) the shift should be applied to.  The axes are defined 

in the order 0,1,2,3,4,5 → x,y,z,r,p,y where r, p, y stand for roll, pitch and 

yaw.  So the command above calls for a translational shift along the y axis. 

73 right_arm.go() 

To execute the shift, we use the go() command.  As before, we could call the plan() 

and execute() command separately or combine them as we have here. 

74 right_arm.shift_pose_target(3, -1.57, end_effector_link) 

75        right_arm.go() 
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Here we use the shift_pose_target() function again but this time we rotate the 

end-effector 90 degrees around the roll axis.  (The roll axis is the same as the x-axis in 

the frame of the end-effector.) 

82        saved_target_pose = right_arm.get_current_pose(end_effector_link) 

Now that we have shifted the end-effector in position and orientation, we can assign the 

new pose to a variable so that we can get back to the same pose later on.  Here we use 

the get_current_pose() function to save the current pose to the variable 

saved_target_pose.  Note that instead of saving the pose of the end-effector, we 

could use the remember_joint_values() function as we did in the previous demo 

to save the joint angles for the entire arm.  The advantage of saving the pose rather than 

the joint angles is that if the environment changes, the IK solver might be able to find a 

different set of joint angles that places the end-effector in the same pose. 

85 right_arm.set_named_target("wave") 
86 right_arm.go() 

Here we move the arm to a named configuration called "wave" stored in the SRDF file. 

90        right_arm.set_pose_target(saved_target_pose, end_effector_link) 

91        right_arm.go() 

Next we use the set_pose_target() function to set the target pose to the saved pose.  

Running the go() command then calls the IK solver to find a corresponding set of joint 

angles and executes a trajectory that will place the end-effector in that pose. 

95 right_arm.set_named_target("resting") 
96 right_arm.go() 

Finally, we return the arm to the "resting" configuration. 

 11.21  Pointing at or Reaching for a Visual Target 

For a more extended example of using inverse kinematics to position the end-effector, 

take a look at the arm_tracker.py node found in the rbx2_arm_nav/nodes 

directory.  This script works in a way similar to the head_tracker.py node we 

examined in the chapter on 3D head tracking, only this time instead of rotating the 

camera to look at the object, we will move the arm so that the robot effectively "points" 

or reaches toward the target. 
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The arm_tracker.py script should be fairly easy to follow given the in-line 

comments and its similarity to head tracking so we won't list it out here.  The basic 

strategy is to subscribe to the /target_pose topic and then use the arm's inverse 

kinematics to position the end-effector to be as close as possible to the target.  At the 

same time, the gripper is kept relatively horizontal to facilitate grasping in case that is 

the ultimate goal.  

If the target object is moved, a new IK solution is computed and the arm moves the 

gripper accordingly. 

One difference between head tracking and arm tracking is that we can't update the arm 

position as quickly as we can the head's pan-and-tilt angles.  The reason is that 

computing IK solutions takes a significant amount of time as we saw in the previous 

section.  So the script checks to see if the target has moved far enough away from its 

last position to make it worth moving the arm again.  If the target moves too far out of 

reach, the robot lowers its arm to the resting position.  Although the script should work 

using MoveIt!'s default KDL IK solver, we can obtain faster and more reliable results 

using a custom IK solver for the robot's arm which is covered in the last section of this 

chapter. 

The arm_tracker.py program also illustrates how to use the ROS tf library to 

transform target poses between different frames of reference.  For example, to 

determine the direction in space that the arm should point or reach, we can transform 

the pose of the target relative to a reference frame attached to the robot's shoulder rather 

than the base frame.  We then position the gripper somewhere along the line connecting 

the shoulder to the target and at a distance equal to the  distance of the target to the 

shoulder or the length of the arm, whichever is less. 

Let's test the arm tracker node using the ArbotiX simulator and the fake 3D target we 

used with head tracking.  If you don't already have it running, bring up the simulated 

one-arm version of Pi Robot: 

$ roslaunch rbx2_bringup pi_robot_with_gripper.launch sim:=true 

And if you don't already have Pi Robot's move_group.launch file running, fire it up 

now: 

$ roslaunch pi_robot_moveit_config move_group.launch 

Now bring up RViz with the fake_target.rviz config file from the rbx2_utils 

package: 
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$ rosrun rviz rviz -d `rospack find rbx2_utils`/fake_target.rviz 

Next, run the fake 3D target at a relatively slow moving speed: 

$ roslaunch rbx2_utils pub_3d_target.launch speed:=0.2 

The yellow balloon should appear in RViz and move slowly in front of the robot.  

Recall that the pub_3d_target.py node publishes the pose of the balloon on 

the/target_pose topic. 

Just for the fun of it, let's bring up the head tracker node in simulation mode so that Pi's 

head will track the target: 

$ roslaunch rbx2_dynamixels head_tracker.launch sim:=true 

After a few moments, the head should start tracking the balloon in RViz. 

Finally, start up the arm_tracker.py node: 

$ rosrun rbx2_arm_nav arm_tracker.py 

If all goes well, Pi should periodically update the position of his arm so that the gripper 

reaches toward the balloon. 

 11.22  Setting Constraints on Planned Trajectories 

In our scripts so far, we have used the set_pose_target() function followed by 

plan() and execute() or simply go() to move the end-effector from one pose to 

another.  The specific trajectory that the end-effector takes through space has been left 

up to the underlying planner.  This trajectory can some times take a rather roundabout 

way to get the gripper from point A to point B, partly due to the random sampling 

methods inherent in the planning process.  

In this section, we will illustrate two basic techniques for gaining more control over the 

path the end-effector takes through space.  First we will explore the use of Cartesian 

paths and waypoints.  Then we will look at applying constraints on the position and/or 

orientation of the end-effector along the trajectory. 
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 11.22.1  Executing Cartesian Paths 

Suppose we want the robot's end-effector to follow straight line trajectories through 

space as it moves through a sequence of poses or waypoints. MoveIt! includes the 

compute_cartesian_path()function that does the trick.  Of course, the individual 

waypoint poses must be reachable by the IK solver or the process will fail.  In the 

simplest case, we can use just two waypoints: the starting pose and a goal pose.  The 

compute_cartesian_path() function can then be used to move the end-effector in 

a straight line between the two poses. 

To see how it works, take a look at the script called moveit_cartesian_demo.py 

found in the rbx2_arm_nav/scripts directory.  The script begins by moving the arm 

to the "straight_forward" pose stored in the SRDF.  Note that we use the regular go() 

command for this first motion so we do not expect the path to be straight.  We then set 

this pose as our starting waypoint.  Next, we set a waypoint that is located 0.2 meters 

back and to the right of the starting pose.  The next waypoint is down, to the left and 

forward again.  The final waypoint is back to the "straight_forward" pose.  Finally, we 

move the arm back to the "resting" configuration using the regular go() command. 

The waypoints are given to the compute_cartesian_path()function as arguments 

and, if all goes well, the gripper should move along a straight line between each 

successive pair of waypoint poses forming a kind of triangle in space. 

To try it out, make sure you have the fake version of Pi Robot running in the ArbotiX 

simulator if it isn't already: 

$ roslaunch rbx2_bringup pi_robot_with_gripper.launch sim:=true 

If you are not already running Pi Robot's MoveIt! launch file, bring it up now: 

$ roslaunch pi_robot_moveit_config move_group.launch 

If RViz is already running, terminate it now then fire it up again with the  

arm_paths.rviz configuration file.  (Alternatively, use the Open Config option 

under the File menu and navigate to rbx2_arm_nav/config/arm_paths.rviz.) 

$ rosrun rviz rviz -d `rospack find rbx2_arm_nav`/config/arm_paths.rviz 

Finally, run the Cartesian paths demo script with the cartesian parameter set to true: 

$ rosrun rbx2_arm_nav moveit_cartesian_demo.py _cartesian:=true 
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The result in RViz should look something like the following: 

 

The straight line triangle in the image is formed by the paths taken by the gripper when 

following the computed Cartesian path.  The two curved paths are the trajectories 

followed when using the regular go() command. 

NOTE: If the script fails with a message like: 

 Path planning failed with only 0.25 success after 100 attempts.  

then simply run the script again.  The Cartesian path planner requires that an IK solution 

can be found for each pose along the path.  If the solver fails to find a solution for one 

or more of the waypoints, then the path is aborted.  Running the script again usually 

finds a solution due to the random nature of the KDL IK solver. 

The path is displayed in RViz because the arm_paths.rviz config checks the box 

beside Show Trail beside the right_gripper_link in the Planned Path list of links 

as shown in the image. 
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Next, try running the script with the cartesian parameter set to false.  This will 

move the gripper to the all target poses using the usual go() function without first 

computing straight line trajectories.  Before running the following command, toggle the 

checkbox beside the right gripper's Show Trail setting to clear the current path if it is 

still displayed.  Then run: 

$ rosrun rbx2_arm_nav moveit_cartesian_demo.py _cartesian:=false 

This time, the view in RViz should look something like this. 

 

Notice that the all the trajectories are now curved.  Note also that the gripper no longer 

stays horizontal along the triangular portion of the trajectory.  What's more, if you run 

the command again, you will get a potentially different set of trajectories in between the 

same waypoints.  This highlights another useful feature of the 

compute_cartesian_path() function: it can move the gripper the same way time 

after time. 

Let's now take a look at the key lines of the script. 

Link to source: moveit_cartesian_demo.py 
16        cartesian = rospy.get_param('~cartesian', True) 
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First we read in the parameter called cartesian that is True by default.  If the 

parameter is True, we calculate Cartesian paths between the set of waypoints.  If it is 

set to False, we use the regular set_pose_target() and go() commands to move 

the arm.  This way we can compare the straight line trajectories with those computed 

the normal way. 

33 # Get the name of the end-effector link 
34 end_effector_link = right_arm.get_end_effector_link() 
35                                         
36 # Start in the "straight_forward" configuration 
37 right_arm.set_named_target("straight_forward") 

Next we get the name of the end-effector link and set the arm to the "straight_forward" 

configuration that we defined when running the MoveIt! Setup Assistant. 

43 # Remember this pose so we can add it as a waypoint 
44 start_pose = right_arm.get_current_pose(end_effector_link).pose 
45         
46 # Set the end pose to be the same as the resting pose 
47 end_pose = deepcopy(start_pose) 

After moving the arm to the "straight_forward" pose, we set the start_pose and 

end_pose variables to be the same as the resting pose so we can use these as the first 

and last waypoints. 

49 # Initialize the waypoints list 
50 waypoints = [] 
51                 
52 # Set the first waypoint to be the starting pose 
53 wpose = deepcopy(start_pose) 
54         
55 if cartesian: 
56 # Append the pose to the waypoints list 
57 waypoints.append(deepcopy(wpose)) 

Next we initialize a list to hold the waypoints and set the wpose variable to a copy of 

the start_pose.  If we are executing a Cartesian path, we then append the first 

waypoint to the waypoints list.  Note that we aren't yet moving the arm—we are 

simply building up a list of waypoints. 

59 # Set the next waypoint back and to the right 
60 wpose.position.x -= 0.2 
61 wpose.position.y -= 0.2 
62 if cartesian: 
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63 # Append the pose to the waypoints list 64            

waypoints.append(deepcopy(wpose)) 65        else: 
66 right_arm.set_pose_target(wpose) 
67 right_arm.go() 
68 rospy.sleep(2) 

Here we set the next waypoint pose 0.2 meters back and 0.2 meters to the right of the 

starting pose.  If the cartesian parameter is set to True, then we append this new 

pose to the waypoints list.  Otherwise, we move the end-effector to the new pose right 

away and in whatever manner the planner chooses by using the standard 

set_pose_target() and go() commands.  

The next few lines (that we'll skip here) simply add another waypoint that positions the 

end-effector down and back toward the mid-line of the robot . The final waypoint is set 

to the starting pose ("straight_forward"). 

95 fraction = 0.0 
96 maxtries = 100 
97 attempts = 0 
98         
99        right_arm.set_start_state_to_current_state() 

Before we compute and execute the Cartesian path, we set a counter for the number of 

attempts we will allow and a variable called fraction that will be explained below.   

We also set the arm's internal start state to the current state. 

101 # Plan the Cartesian path connecting the 
waypoints 

102 while fraction < 1.0 and attempts < 
maxtries: 

103 (plan, fraction) = 
right_arm.compute_cartesian_path( 

104 waypoints,   # waypoint poses 
105 0.01,        # eef_step 
106 0.0          # jump_threshold 
107 True)        # avoid_collisions 108            

attempts += 1 
109 
110 if attempts % 100 == 0: 
111 rospy.loginfo("Still trying after " + str(attempts) + " 

attempts...") 

The key statement here begins on Line 103 above and continues to Line 107.  Here we 

invoke the function compute_cartesian_path() which takes four arguments: 
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• waypoints – the list of poses we want the end-effector to pass through 

• eef_step –  maximum end-effector step (in meters) allowed between 

consecutive positions of the end-effector along the trajectory.  We have set this 

to 0.01 meters or 1 cm. 

• jump_threshold – how little we want the arm to jump in configuration space. 

Setting this to 0.0 effectively disables this check. 

• avoid_collisions – whether or not planning should avoid collisions.  The 

default value for this argument is True. 

The compute_cartesian_path()returns two values: the computed plan (trajectory) 

for that attempt and the fraction of waypoints successfully reached using that plan.  

For a successful plan, we want the fraction to be 1.0 (100%) so we wrap the 

compute_cartesian_path() function in a while loop until either the returned 

fraction is 1.0 or we run out of attempts as specified by the maxtries value.  

(While maxtries is set to 100 in the script, you could also pass it in as a ROS 

parameter.) 

112        # If we have a complete plan, execute the trajectory 

113        if fraction == 1.0: 
114            rospy.loginfo("Path computed successfully. Moving the arm.") 

115            right_arm.execute(plan) 116        else: 
117            rospy.loginfo("Path planning failed with only " + str(fraction) + 

" success after " + str(maxtries) + " attempts.") 

Finally, if we obtain a plan that passes through 100% of the waypoints, we execute the 

plan.  Otherwise, we display a "plan failed" message. 

 11.22.2  Setting other path constraints 

Suppose the robot's task is to grasp and move an object while keeping it upright.  For 

example, the object might be a container of liquid like a cup of coffee so that the cup 

has to be kept from tipping and spilling the fluid.  MoveIt! allows us to specify path 

constraints for the planned trajectory that can accomplish this type of goal. 

In this case, we need to constrain the orientation of the gripper so that it stays level 

during the motion.  The script moveit_contraints_demo.py in the 

rbx2_arm_nav/scripts directory illustrates how it works.  This script performs the 

following actions: 

• starts the arm in the "resting" position 
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• moves the arm to an initial pose with the gripper about shoulder height and 

horizontal 

• creates and sets an orientation constraint specifying a horizontal orientation for 

the gripper 

• sets a target pose for  the gripper in front of the robot and down around table 

height 

• plans and executes a path to the target pose while satisfying the orientation 

constraint 

• clears the constraints 

• moves the arm back to the "resting" position  

Keep in mind that when using path constraints, both the starting pose and target pose 

must satisfy the constraints or planning will fail. 

Before looking at the code, let's try it out.  First bring up the one arm version of Pi 

Robot in the ArbotiX simulator: 

$ roslaunch rbx2_bringup pi_robot_with_gripper.launch sim:=true 

Now fire up the MoveIt! nodes for Pi: 

$ roslaunch pi_robot_moveit_config move_group.launch 

Next, bring up RViz with the arm_nav.rviz config file: 

$ rosrun rviz rviz -d `rospack find rbx2_arm_nav`/config/arm_nav.rviz 

Finally, run the moveit_contraints_demo.py script: 

$ rosrun rbx2_arm_nav moveit_constraints_demo.py 

If the motion is successful, the gripper should move vertically downward in front of the 

robot keeping the gripper horizontal.  You will notice that there is typically quite a long 

pause (possibly as long as 2 minutes on an i5) while the planner attempts to compute a 

path for the gripper that satisfies the constraints, and some times it will fail altogether 

even after the default 5 attempts.  (We set a 15 second planning time per attempt in the 

script.)  This is due to the random sampling algorithm that requires an IK solution for 

each sample point and the fact that the KDL numerical solver is relatively slow when 
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computing IK solutions.  Fortunately, much faster and more reliable results can be 

obtained by using the IKFast solver that we will explore at the end of the chapter. 

Let's now look at the key lines in the moveit_constraints_demo.py script: 

Link to source:  moveit_constraints_demo.py 

from moveit_msgs.msg import Constraints, OrientationConstraint 

To use orientation constraints, we first import the general Constraints message type 

as well as the OrientationConstraint message from the MoveIt! messages 

package.  (There is also a PositionConstraint message type that works in a similar 

way.) 

    # Create a contraints list and give it a name 
    constraints = Constraints() 
    constraints.name = "Keep gripper horizontal" 

     
    # Create an orientation constraint for the right gripper     
orientation_constraint = OrientationConstraint()     
orientation_constraint.header = start_pose.header 
    orientation_constraint.link_name = right_arm.get_end_effector_link()     
orientation_constraint.orientation.w = 1.0     
orientation_constraint.absolute_x_axis_tolerance = 0.1     
orientation_constraint.absolute_y_axis_tolerance = 0.1     
orientation_constraint.absolute_z_axis_tolerance = 3.14     
orientation_constraint.weight = 1.0 

To create a path constraint, we first initialize a Constraints list and give it a name.  

We then start adding constraints to the list.  In this case, we are going to add a single 

orientation constraint. 

The constraint header is typically the same as the header of the pose of the arm just 

before applying the constraint. 

The link_name refers to the link we want to constrain which in our case is the gripper 

(end-effector). 

We then set the desired orientation to be the unit quaternion (the x, y, and z components 

are zero by default.)  The unit quaternion in the planning frame (base_footprint) 

refers to a horizontal orientation of the gripper with the fingers pointing in the direction 

of the x-axis (i.e. in the same direction that the robot faces.)  If we just want to keep the 

gripper level and we don't care if it rotates around the z-axis during the motion, we can 

set the absolute_z_axis_tolerance to 3.14 radians which is what we have done 
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above.  However, to keep the gripper from pitching or rolling around the x and y axes, 

we set these tolerances fairly low. 

Finally, we give this constraint a weight which would have more relevance if we were 

applying multiple constraints at the same time. 

    # Append the constraint to the list of contraints 
    constraints.orientation_constraints.append(orientation_constraint) 

       
    # Set the path constraints on the right_arm     
right_arm.set_path_constraints(constraints)   

In these next two lines, we first append the orientation constraint to the list of 

constraints and then, since that is the only constraint we are going to apply, we use the 

set_path_constraints() function to apply the constraints to the right_arm move 

group. 
    # Set a target pose for the arm            
target_pose = PoseStamped() 
    target_pose.header.frame_id = REFERENCE_FRAME     
target_pose.pose.position.x = 0.173187824708     
target_pose.pose.position.y = -0.0159929871606     
target_pose.pose.position.z = 0.692596608605     
target_pose.pose.orientation.w = 1.0 

    # Set the start state and target pose, then plan and execute     
right_arm.set_start_state_to_current_state() 
    right_arm.set_pose_target(target_pose, 

end_effector_link)     right_arm.go()     rospy.sleep(1) 

We then set the next target pose and execute the trajectory as usual.  The planner sees 

that we have applied the constraint on the right_arm group and therefore incorporates 

the constraint into the planning. 

   right_arm.clear_path_constraints() 

When you want to go back to regular planning, clear all constraints using the 

clear_path_constraints() function. 

 11.23  Adjusting Trajectory Speed 

At the time of this writing, MoveIt! does not provide a direct way to control the speed at 

which a trajectory is executed.  As we explained earlier in the chapter, trajectory speed 

is determined more indirectly using the maximum joint speeds set in the robot's URDF 

model and the max_velocity and max_acceleration values set in the  
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joint_limits.yaml configuration found in the config subdirectory of your robot's 

MoveIt! package.  But since these are maximum values, they are set once for all 

trajectories. 

It is relatively straightforward to implement our own trajectory speed control.   

Essentially all we need to do is scale the velocities, accelerations and 

time_from_start for each point along the trajectory.  The only limitation is that we 

can only slow down trajectory speeds this way since the default speed is already as fast 

as the joint_limits.yaml file will allow. 

We will create a function called scale_trajectory_speed() and store it in a 

separate Python module so that it can be used in any script it might be needed.  The 

module is the file arm_utils.py located in the directory  

rbx2_arm_nav/src/rbx2_arm_nav.  Simply import this module whenever you want 

access to the scale_trajectory_speed() function.  (Details below.) 

To see the function in action, first launch the fake version of Pi Robot if it is not already 

running: 

$ roslaunch rbx2_bringup pi_robot_with_gripper.launch sim:=true 

Next, bring up Pi Robot's move_group.launch file if it is not already running: 

$ roslaunch pi_robot_moveit_config move_group.launch 

Now bring up RViz with the arm_nav.rviz config file: 

$ rosrun rviz rviz -d `rospack find rbx2_arm_nav`/config/arm_nav.rviz 

Finally, run the moveit_speed_demo.py script: 

$ rosrun rbx2_arm_nav moveit_speed_demo.py 

The robot should first move the arm to the straight out position at normal speed, then 

back to the resting position at roughly ¼ normal speed. 

Let's now look at the code: Link 

to source: arm_utils.py 

1 #!/usr/bin/env python 
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2 
3 import rospy 
4 from moveit_msgs.msg import RobotTrajectory 
5 from trajectory_msgs.msg import JointTrajectoryPoint 
6 from geometry_msgs.msg import PoseStamped, Pose 7 
8 def scale_trajectory_speed(traj, scale): 
9 # Create a new trajectory object 
10 new_traj = RobotTrajectory() 

11        
12       # Initialize the new trajectory to be the same as the input trajectory 

13       new_traj.joint_trajectory = traj.joint_trajectory 
14        
15 # Get the number of joints involved 
16 n_joints = len(traj.joint_trajectory.joint_names) 
17        
18 # Get the number of points on the trajectory 
19 n_points = len(traj.joint_trajectory.points) 
20         
21 # Store the trajectory points 
22 points = list(traj.joint_trajectory.points) 
23        
24 # Cycle through all points and 

joints and scale the time from 

start, 
25 # speed and acceleration 26       

for i in range(n_points): 
27           point = JointTrajectoryPoint() 
28            
29           # The joint positions are not scaled so pull them out first 30           

point.positions = traj.joint_trajectory.points[i].positions 31 
32 # Next, scale the time_from_start for this point 
33 point.time_from_start =  
traj.joint_trajectory.points[i].time_from_start / scale 
34            
35 # Get the velocities for each joint for this point 
36 point.velocities = 

list(traj.joint_trajectory.points[i].velocities) 
37            
38 # Get the accelerations for each joint for this point 
39 point.accelerations =  
list(traj.joint_trajectory.points[i].accelerations) 
40            
41           # Scale the velocity and acceleration for each joint at this point 

42           for j in range(n_joints): 
43 point.velocities[j] = point.velocities[j] * scale 
44 point.accelerations[j] = point.accelerations[j] * scale * 

scale 
45         
46 # Store the scaled 

trajectory point 
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47 points[i] = point48 
49 # Assign the modified points to the new 

trajectory 
50 new_traj.joint_trajectory.points = points51 
52 # Return the new trajecotry 
53 return new_traj 

Let's break down the code line by line. 
4 from moveit_msgs.msg import RobotTrajectory 
5 from trajectory_msgs.msg import JointTrajectoryPoint 

First we import the RoboTrajectory and JointTrajectoryPoint objects.   As we 

know from earlier in the chapter, a robot trajectory is made up of a number of trajectory 

points and each point holds the position, velocity, acceleration and effort for each joint 

at that point. 
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8 def scale_trajectory_speed(traj, scale): 
9 # Create a new trajectory object 
10 new_traj = RobotTrajectory() 
11        
12 # Initialize the new trajectory to be the same as the input trajectory 
13 new_traj.joint_trajectory = traj.joint_trajectory 

Here we begin the definition  of the function scale_trajectory_speed() that takes 

a trajectory and scale factor as arguments.  First we create a new trajectory called 

new_traj that will hold the modified trajectory and we initialize the trajectory points 

with those from the input trajectory. 

15 # Get the number of joints involved 
16 n_joints = len(traj.joint_trajectory.joint_names) 
17        
18 # Get the number of points on the trajectory 
19 n_points = len(traj.joint_trajectory.points) 
20         
21 # Store the trajectory points 
22 points = list(traj.joint_trajectory.points) 

Next we get a count of the number of joints and the number of points in the trajectory.  

We convert the trajectory points to a Python list so we can enumerate through them. 

26 for i in range(n_points): 
27 point = JointTrajectoryPoint() 
28            
29           # The joint positions are not scaled so pull them out first 30           

point.positions = traj.joint_trajectory.points[i].positions 31 
32 # Next, scale the time_from_start for this point 
33 point.time_from_start = 

traj.joint_trajectory.points[i].time_from_start / scale 

For each point on the trajectory, we start by initializing a new trajectory point to hold 

the modifications.  Scaling does not affect the joint positions along the trajectory so we 

pull them from the original trajectory unmodified.  Then we adjust the 

time_from_start by the scale factor.  The smaller the scale factor (the slower we 

want the trajectory to be executed), the longer the time_from_start for each point 

which is why we divide rather than multiply by the scale. 

35 # Get the joint velocities for this point 
36 point.velocities = list(traj.joint_trajectory.points[i].velocities) 
37            
38 # Get the joint accelerations for this point 
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39 point.accelerations = 
list(traj.joint_trajectory.points[i].accelerations) 

We then pull out the list of joint velocities and accelerations for this point so that we can 

scale them next. 

42 for j in range(n_joints): 
43 point.velocities[j] = point.velocities[j] * scale 
44 point.accelerations[j] = point.accelerations[j] * scale * scale  

Here we scale the joint velocities and accelerations for this trajectory point.  Note how 

accelerations get multiplied by the square of the scale since acceleration is the rate of 

change of velocity. 

47           points[i] = point 

With the scaling complete, we store the modified trajectory point as the ith point in the 

new trajectory. 

50       new_traj.joint_trajectory.points = points 

When all points have been scaled, we assign the entire list to the new trajectory. 

53       return new_traj 

Finally, we return the new trajectory to the calling program. 

 11.24  Adding Obstacles to the Planning Scene 

One of the more powerful features of MoveIt! is the ability to plan arm motions around 

obstacles.  Bear in mind that to plan a successful reaching trajectory, MoveIt! must not 

allow any part of the arm to strike an object or another part of the robot.  Think of 

reaching for the butter at the dinner table without bumping a wine glass near your 

elbow. This is a complex problem in geometry and inverse kinematics but MoveIt! 

makes it relatively easy for us to implement. 

Our next demo script, moveit_obstacles_demo.py, begins by placing some 

simulated obstacles into the planning scene.  The key to viewing such obstacles in RViz 

is to select the /move_group/monitored_planning_scene topic for the Planning 

Scene Topic in the Motion Planning display as shown below: 



 

 Arm Navigation using MoveIt! - 368 

 

The obstacles initially appear all the same color in RViz which is determined by the 

setting under the Motion Planning display named Scene Geometry → Scene Color 

also shown above.  Our script sets different colors for individual objects.  Real obstacles 

can be added to the planning scene either from existing knowledge of the robot's 

environment, or from sensor data such as laser scans and point clouds as we will see 

later in the chapter. 

Before we look at the code, let's run the simulation.  If you're not already running the 

one-arm version of Pi Robot in the ArbotiX simulator, bring it up now: 

$ roslaunch rbx2_bringup pi_robot_with_gripper.launch sim:=true 

Next, bring up Pi Robot's move_group.launch file if it is not already running: 

$ roslaunch pi_robot_moveit_config move_group.launch 

Make sure RViz is running with the arm_nav.rviz config file: 

$ rosrun rviz rviz -d `rospack find rbx2_arm_nav`/config/arm_nav.rviz 
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Now run the moveit_obstacles.demo.py script with the following command: 

$ rosrun rbx2_arm_nav moveit_obstacles_demo.py 

The script first adds a floating table top and two boxes to the scene. It then moves the 

arm to the "resting" position in case it is not already there.  Next we set a target pose for 

the gripper to place it in between the two boxes and a few centimeters above the table.  

MoveIt! then deftly controls the arm to move the gripper to the target pose while 

avoiding any collisions with any part of the arm with the obstacles.  Finally, we move 

the arm back to the resting position.  The view in RViz should something look like this 

part way through the sequence:  
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Let's now take a look at the code. 

Link to source: moveit_obstacles_demo.py 

1 #!/usr/bin/env python 
2 
3 import rospy, sys 
4 import moveit_commander 
5 from moveit_commander import MoveGroupCommander, PlanningSceneInterface 
6 from moveit_msgs.msg import  PlanningScene, ObjectColor 
7 from geometry_msgs.msg import PoseStamped, Pose 8 
9 class MoveItDemo: 
10 def __init__(self): 
11 # Initialize the move_group API 
12 moveit_commander.roscpp_initialize(sys.argv) 
13         
14        rospy.init_node('moveit_demo') 
15         
16 # Construct the initial scene object 
17 scene = PlanningSceneInterface() 
18         
19 # Create a scene publisher to push changes to the scene 
20 self.scene_pub = rospy.Publisher('planning_scene', PlanningScene) 
21         
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22        # Create a dictionary to hold object colors 
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23        self.colors = dict() 
24         
25 # Take a breath... 
26 rospy.sleep(1) 
27                         
28 # Initialize the MoveIt! commander for the right arm 
29 right_arm = MoveGroupCommander('right_arm') 
30         
31 # Get the name of the end-effector link 
32 end_effector_link = right_arm.get_end_effector_link() 
33         
34 # Allow some leeway in position (meters) and orientation (radians) 
35 right_arm.set_goal_position_tolerance(0.01) 
36 right_arm.set_goal_orientation_tolerance(0.05) 
37        
38 # Allow replanning to increase the odds of a solution 
39 right_arm.allow_replanning(True) 
40         
41 # Set the reference frame for pose targets 
42 reference_frame = 'base_footprint' 
43         
44 # Set the right arm reference frame accordingly 
45 right_arm.set_pose_reference_frame(reference_frame) 
46         
47 # Allow 5 seconds per planning 

attempt 
48 right_arm.set_planning_time(5) 49 
50 # Give each of the scene objects a unique name 
51 table_id = 'table' 
52 box1_id = 'box1' 
53 box2_id = 'box2' 
54         
55 # Remove leftover objects from a previous run 
56 scene.remove_world_object(box1_id) 
57 scene.remove_world_object(box2_id) 
58 scene.remove_world_object(table_id) 
59         
60 # Give the scene a chance to catch up 
61 rospy.sleep(1) 
62         
63 # Start the arm in the "resting" pose stored in the SRDF file 
64 right_arm.set_named_target("resting") 
65 right_arm.go() 
66         
67        rospy.sleep(2) 
68         
69 # Set the height of the table off the ground 
70 table_ground = 0.75 
71         
72 # Set the length, width and height of the table and boxes 
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73 table_size = [0.2, 0.7, 0.01] 
74 box1_size = [0.1, 0.05, 0.05] 
75 box2_size = [0.05, 0.05, 0.15] 
76         
77        # Add a table top and two boxes to the scene 
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78 table_pose = PoseStamped() 
79 table_pose.header.frame_id = reference_frame 
80 table_pose.pose.position.x = 0.26 
81 table_pose.pose.position.y = 0.0 
82 table_pose.pose.position.z = table_ground + table_size[2] / 2.0 
83 table_pose.pose.orientation.w = 1.0 
84 scene.add_box(table_id, table_pose, table_size) 
85         
86 box1_pose = PoseStamped() 
87 box1_pose.header.frame_id = reference_frame 
88 box1_pose.pose.position.x = 0.21 
89 box1_pose.pose.position.y = -0.1 
90 box1_pose.pose.position.z = table_ground + table_size[2] + box1_size[2] / 
2.0 
91 box1_pose.pose.orientation.w = 1.0    
92 scene.add_box(box1_id, box1_pose, box1_size) 
93         
94 box2_pose = PoseStamped() 
95 box2_pose.header.frame_id = reference_frame 
96 box2_pose.pose.position.x = 0.19 
97 box2_pose.pose.position.y = 0.15 
98 box2_pose.pose.position.z = table_ground + table_size[2] + box2_size[2] / 
2.0 
99 box2_pose.pose.orientation.w = 1.0    
100 scene.add_box(box2_id, box2_pose, box2_size) 101         
102 # Make the table red and the boxes orange 
103 self.setColor(table_id, 0.8, 0, 0, 1.0) 
104 self.setColor(box1_id, 0.8, 0.4, 0, 1.0) 
105 self.setColor(box2_id, 0.8, 0.4, 0, 1.0) 106         
107 # Send the colors to the planning scene 
108 self.sendColors()     
109         
110 # Set the target pose in between the boxes and above the table 
111 target_pose = PoseStamped() 
112 target_pose.header.frame_id = reference_frame 
113 target_pose.pose.position.x = 0.2 
114 target_pose.pose.position.y = 0.0 
115 target_pose.pose.position.z = table_pose.pose.position.z + table_size[2] + 
0.05 
116 target_pose.pose.orientation.w = 1.0 
117         
118 # Set the target pose for the arm 
119 right_arm.set_pose_target(target_pose, end_effector_link)120         
121 # Move the arm to the target pose (if possible) 
122 right_arm.go() 
123 
124 # Pause for a moment... 
125 rospy.sleep(2) 
126 # Exit MoveIt! cleanly 
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127 moveit_commander.roscpp_shutdown()128         
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129 # Exit the script         
130 moveit_commander.os._exit(0) 
131         
132 # Set the color of an object 
133 def setColor(self, name, r, g, b, a = 0.9): 
134 # Initialize a MoveIt! color object 
135 color = ObjectColor() 
136         
137 # Set the id to the name given as an argument 
138 color.id = name 
139         
140 # Set the rgb and alpha values given as input 
141 color.color.r = r 
142 color.color.g = g 
143 color.color.b = b 
144 color.color.a = a 
145         
146 # Update the global color 

dictionary 
147 self.colors[name] = color 148 
149 # Actually send the colors to MoveIt! 
150 def sendColors(self): 
151 # Initialize a planning scene object 
152 p = PlanningScene()153 
154 # Need to publish a planning scene diff         
155 p.is_diff = True 
156         
157        # Append the colors from the global color dictionary 158        

for color in self.colors.values(): 
159            p.object_colors.append(color) 
160         
161 # Publish the scene diff 
162 self.scene_pub.publish(p)163 
164if __name__ == "__main__": 
165 try: 
166 MoveItDemo() 
167 except KeyboardInterrupt: 168        raise 

Let's examine the key lines of the script: 
5 from moveit_commander import MoveGroupCommander, PlanningSceneInterface 
6 from moveit_msgs.msg import PlanningScene, ObjectColor 

Here we import the PlanningSceneInterface that enables us to add and remove 

objects to and from the scene.  We will also give the objects different colors by using 

the ObjectColor message type and we will publish object updates to the 

planning_scene topic using the PlanningScene message type. 
17        scene = PlanningSceneInterface() 
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We create an instance of the PlanningSceneInterface class and assign it to the 

variable scene. 

20        self.scene_pub = rospy.Publisher('planning_scene', PlanningScene) 

Here we define the scene publisher that will be used to publish object color information 

back to the planning scene. 

41 # Set the reference frame for pose targets 
42 reference_frame = 'base_footprint' 
43         
44 # Set the right arm reference frame accordingly 
45 right_arm.set_pose_reference_frame(reference_frame) 

We will set the object poses relative to the base_footprint frame so we assign it to 

the variable reference_frame so that it can be reused throughout the script.  We also 

set the arm's pose reference frame to the same frame to keep things simple.  You can use 

different frames for scene objects and arm poses if it makes more sense for a given 

situation. 

51 table_id = 'table' 
52 box1_id = 'box1' 
53 box2_id = 'box2' 

Each scene object requires a unique name which we assign to the variables table_id, 

box1_id and box2_id. 

56 scene.remove_world_object(box1_id) 
57 scene.remove_world_object(box2_id) 
58 scene.remove_world_object(table_id) 

Since we might want to run the script more than once in succession, we use the 

remove_world_object() function to remove any scene objects that would have been 

added by a previous run. 

69 # Set the height of the table off the ground 
70 table_ground = 0.75 
71         
72 # Set the length, width and height of the table and boxes 
73 table_size = [0.2, 0.7, 0.01] 
74 box1_size = [0.1, 0.05, 0.05] 
75 box2_size = [0.05, 0.05, 0.15] 
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Here we set the height of the floating table off the ground as well as the dimensions (in 

meters) of the table and the two boxes. 

78 table_pose = PoseStamped() 
79 table_pose.header.frame_id = reference_frame 
80 table_pose.pose.position.x = 0.26 
81 table_pose.pose.position.y = 0.0 
82 table_pose.pose.position.z = table_ground + table_size[2] / 2.0 
83 table_pose.pose.orientation.w = 1.0 

Next we set the pose for the table, placing it 0.26 meters in front of the reference frame  

(/base_footprint) and at a height determined by the table_ground variable (set 

to 0.75 meters earlier) plus half the height of the table itself. 

84 scene.add_box(table_id, table_pose, table_size) 

Now we can add the table to the planning scene using the add_box() function.  This 

function takes a string argument for the name of the object followed by the pose and 

size of the box. 

We will skip the lines where we set the poses of the two boxes and add them to the 

scene the same way we did for the table. 

102 # Make the table red and the boxes orange 
103 self.setColor(table_id, 0.8, 0, 0, 1.0) 
104 self.setColor(box1_id, 0.8, 0.4, 0, 1.0) 
105 self.setColor(box2_id, 0.8, 0.4, 0, 1.0) 
106         
107        # Send the colors to the planning scene 
103        self.sendColors()   

While certainly not necessary, it is nice to give the objects different colors so that they 

appear more distinct in RViz.  Here we use a convenience function defined later in the 

script to color the table red and the two boxes orange. 

111 target_pose = PoseStamped() 
112 target_pose.header.frame_id = reference_frame 
113 target_pose.pose.position.x = 0.2 
114 target_pose.pose.position.y = 0.0 
115 target_pose.pose.position.z = table_pose.pose.position.z + 

table_size[2] + 0.05 
116 target_pose.pose.orientation.w = 1.0 
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Here we set the target pose for the end effector to be in between the two boxes and 5 cm 

above the table.  The target orientation is to have the gripper horizontal. 

118 # Set the target pose for the arm 
119 right_arm.set_pose_target(target_pose, end_effector_link)120         
121        # Move the arm to the target pose (if possible) 

122        right_arm.go() 

Finally, we set the target pose for the arm and run the go() command to plan and 

execute a trajectory that avoids the obstacles. 

The script finishes up with a couple of auxiliary functions for setting the object colors.  

These functions were borrowed from Mike Ferguson's moveit_python package.  The 

setColor() function is fairly self explanatory and uses the ObjectColor message 

type from the moveit_msgs package.  However, the sendColors() function could 

use a little explanation so let's look at it now: 

150 def sendColors(self): 
151 # Initialize a planning scene object 
152 p = PlanningScene()153 
154 # Need to publish a planning scene diff         
155 p.is_diff = True 
156         
157        # Append the colors from the global color dictionary 158        

for color in self.colors.values(): 
159            p.object_colors.append(color) 
160         
161 # Publish the scene diff 
162 self.scene_pub.publish(p) 

The key idea here is that we are making an update to the planning scene rather than 

creating one from scratch.  The objects have already been added earlier in the script and 

we just want to paint them a different color.  The PlanningScene message includes a 

field called is_diff and if this is set to True as we do above, then the overall 

planning scene will be updated rather than replaced by the information we publish.  The 

last line in the function uses the scene publisher that we defined near the top of the 

script to actually publish the object colors. 

 11.25  Attaching Objects and Tools to the Robot 

Suppose your robot is holding a tool or other object (maybe a light saber?) and we want 

motion planning to incorporate this object when performing collision checking.  

MoveIt! makes this easy by providing the attach_box() and attach_mesh() 

functions to attach the desired object to the robot—usually to the end-effector, but it can 
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be attached to any part of the robot.  Once the object is attached, any further motion 

commands will take into account the size and shape of the object. 

The demo script moveit_attached_object_demo.py shows how to attach an 

elongated tool to Pi Robot's gripper and then move the arm to the "straight_forward" 

pose followed by the "resting" pose while avoiding contact between the tool and the 

floating table. 

To test it out, make sure you have the fake version of Pi Robot running, as well as Pi's 

move_group.launch file.  If RViz is already running, exit it now and bring it back up 

with the attached_object.rviz config file: 

$ rosrun rviz rviz -d `rospack find 
rbx2_arm_nav`/config/attached_object.rviz 

Now run the demo script: 

$ rosrun rbx2_arm_nav moveit_attached_object_demo.py 

The attached object will turn purple in color when the attachment is successful.  It will 

then turn green again at the end when it is detached.  Note how the movement of the 

arm compensates for the attached object and prevents it from striking any part of the 

table or the base of the robot. 

NOTE: The rather jerky motion of the arm in this demo is due to some as yet 

unidentified bug or limitation in the update rate of the MoveIt! RViz plugin.  A real arm 

would move smoothly. 

The first part of the script is the same as the moveit_obstacles_demo.py so we 

won't repeat it here.  The key lines for attaching the object to the end-effector are as 

follows: 
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60    # Set the length, width and height of the object to attach 61    

tool_size = [0.3, 0.02, 0.02] 
62     
63 # Create a pose for the tool relative to the end-effector 
64 p = PoseStamped() 
65 p.header.frame_id = end_effector_link 
66     
67 # Place the end of the object within the grasp of the gripper 
68 p.pose.position.x = tool_size[0] / 2.0 - 0.025 
69 p.pose.position.y = 0.0 
70 p.pose.position.z = 0.0 
71     
72    # Align the object with the gripper (straight out) 73    

p.pose.orientation.x = 0 
74 p.pose.orientation.y = 0 
75 p.pose.orientation.z = 0 
76 p.pose.orientation.w = 1 
77     
78 # Attach the tool to the end-effector 
79 scene.attach_box(end_effector_link, 'tool', p, tool_size) 

In Line 62 we set the dimensions of the box-shaped tool and give it a length of 0.3 

meters (30 cm) and a width and height of 0.02 meters (2 cm). 

Lines 64-76 define the pose we want the object to have relative to the end-effector.  

The pose used here orients the long dimension of the tool to be parallel to the gripper 

fingers and pointing out from the arm.  To position the tool so that it appears to be 

grasped by the gripper at one end, we slide it ½ the length of the tool so that its end is 

position just at the finger tips, then bring it back 2.5 cm so the gripper appears to have 

a good hold on it. 

Finally, in Line 79, we use the attach_box() function on the scene object to attach 

our box-shaped tool to the end-effector.  This function takes four arguments: the link to 

which we want to attach the object; the name (given as a string) assigned to the object 

we are attaching (so it can be referred to later); the pose defining the object's relation to 

the attachment link; the size of the box we are attaching given as a triple specifying 

length, width and height.  You can also supply an optional fifth argument which is the 

list of "touch links" this object is allowed to contact without it being considered a 

collision. 

That's all there is to it.  The rest of the script simply places the arm in the 

"straight_forward" pose followed by the "resting" pose.  MoveIt! takes care of the 

motion planning with the object attached to the end-effector. 
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Instead of the attach_box() function used above, you can also use the attach_mesh() 

function to attach an STL or Collada mesh object stored in a file.  The order of the 

arguments in this case is: attach_mesh(link, object_name, pose, filename, 

touch_links=[]). 

Toward the end of the script, we detach the tool from the end-effector with the 

statement: 

102    scene.remove_attached_object(end_effector_link, 'tool')  

Note how we reference the tool by the name we gave it earlier during the attach 

operation.  Note also that like the attach_box() function, the  

remove_attached_object() function is defined on the scene object, not the move 

group for the arm. 

 11.26  Pick and Place 

The next demonstration adds another object to the table that we would like the robot to 

grasp with its gripper.  The object will appear in RViz as a narrow yellow box 

positioned in between the two orange boxes.  We already know from the earlier obstacle 

demo that we can move the gripper in between the two larger boxes if we send it a 

precalculated pose.  The more realistic challenge is to derive the grasping pose from the 

pose of the target object.  MoveIt! does not yet have a function to do this automatically 

for us.  Fortunately, others have provided utilities to make our job easier. 

The basic task at hand is to generate a collection of reasonable gripper poses that might 

do the job.  Since we know the pose of the target object, we can try a series of gripper 

poses centered on the object and aligned with its orientation.  These trial poses will be 

given a range of pitch, yaw and (perhaps) roll values until MoveIt! lets us know that a 

given pose can be reached while not colliding with the target or other obstacles. 

The image below shows the orientation and position of the virtual frame attached to the 

right_gripper_link:  
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Remember that we defined this frame for planning purposes and placed the axes in 

between the two finger pads which is where we would typically grasp an object.  From 

the image you can see that we want to align this frame with the target object (the narrow 

yellow block) and place the origin of the gripper frame near the center of the object. 

Before looking at the code, let's try it out in simulation.  If you're not already running Pi 

Robot in the ArbotiX simulator, bring it up now: 

$ roslaunch rbx2_bringup pi_robot_with_gripper.launch sim:=true 

Next, bring up Pi Robot's move_group.launch file if it is not already running: 

$ roslaunch pi_robot_moveit_config move_group.launch 

Now run RViz with the pick_and_place.rviz config file: 

$ rosrun rviz rviz -d `rospack find 
rbx2_arm_nav`/config/pick_and_place.rviz 
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Finally, run the moveit_pick_and_place.demo.py script: 
$ rosrun rbx2_arm_nav moveit_pick_and_place_demo.py 

Like the obstacles demo, the script first adds a floating table top and two boxes to the 

scene.   It also adds a narrow box in between the first two boxes and this is set as the 

target for the pick-and-place operation.  After generating a number of test grasps, the 

arm is moved to place the gripper in the correct position to grasp the target.  The gripper 

then closes around the target and the target is placed at a new location on the table. 

NOTE 1: You will notice that the movement of the grasped object seems to lag the 

movement of the gripper.  This is an artifact of some as yet unidentified bug or 

limitation in the MoveIt! RViz plugin.  You can see smooth motion of the object at the 

expense of jerky movement of the arm by changing the following settings in RViz: 

• under Scene Robot, change the Alpha value from 0 to 1 

• un-check the RobotModel display 

Now run the pick-and-place demo again.  This time the arm motion will not be as 

smooth but the grasped object will move in sync with the gripper. 

NOTE 2: You might find that either the pick operation or the place operation fails after 

the five attempts allowed in the script.  This can sometimes happen when the IK solver 

fails to find a solution for moving either the gripper (during pick) or the grasped object 

(during place).  We'll discuss methods for increasing the chances of success below.  For 

now, simply run the script again until both the pick and place operations succeed. 

Since the moveit_pick_and_place_demo.py script is similar to the 

moveit_obstacles_demo.py script that we looked at in the previous section, we 

will focus only on what is new. 

Link to source: moveit_pick_and_place_demo.py 

Let's start with the new import statements: 

 from moveit_msgs.msg import Grasp, GripperTranslation, MoveItErrorCodes 

First we need to import the Grasp, GripperTranslation and MoveItErrorCodes 

message types.  The Grasp message type will be used to specify a list of possible grasp 

poses to try when the gripper is in range of the target object.  The  

GripperTranslation message type allows us to specify an approach direction as 

well as minimum and desired approach distances.  And the MoveItErrorCodes will 
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allow us to test for the success of a pick or place operations.  More details will follow 

below. 

 from tf.transformations import quaternion_from_euler 

We also import the quaternion_from_euler function from the tf library since we 

will be converting some Euler angles to quaternions. 
 GROUP_NAME_ARM = 'right_arm' 
 GROUP_NAME_GRIPPER = 'right_gripper'  

GRIPPER_FRAME = 'right_gripper_link' 

 GRIPPER_CLOSED = [-0.06] 
 GRIPPER_OPEN = [0.05] 
 GRIPPER_NEUTRAL = [0.0]  GRIPPER_JOINT_NAMES = 

['right_gripper_finger_joint'] 

 GRIPPER_EFFORT = [1.0] 

 REFERENCE_FRAME = 'base_footprint' 

For convenience, we define a number of global variables to hold the names of various 

links, frames and joints.  These could also be read in as ROS parameters.  The values 

listed for the three gripper positions (closed, open and neutral) were determined 

somewhat empirically. 

        self.gripper_pose_pub = rospy.Publisher('gripper_pose', PoseStamped) 

During debugging, it is sometimes helpful to visualize the gripper poses that are 

attempted when trying to pick up the target object.  Here we define a publisher that will 

allow us to publish the various poses on the "gripper_pose" topic.  We can then 

subscribe to this topic in RViz to view the poses. 

 # Set a limit on the number of pick attempts before bailing 
 max_pick_attempts = 5 

         
 # Set a limit on the number of place attempts  max_place_attempts = 5 

The MoveIt! pick-and-place operation is not guaranteed to succeed on the first try so we 

specify a maximum number of attempts for the pick operation and the place operation 

separately. 

 target_size = [0.02, 0.01, 0.12] 
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Like we did for the table and boxes, we define a length, width and height for the target 

object.  In this case we are creating a narrow box target that is 12cm high and 2cm x 

1cm on its sides. 
 # Set the target pose in between the boxes and on the table  
target_pose = PoseStamped() 
 target_pose.header.frame_id = REFERENCE_FRAME  
target_pose.pose.position.x = 0.22  
target_pose.pose.position.y = 0.0 
 target_pose.pose.position.z = table_ground + table_size[2] + target_size[2] /  
2.0 
 target_pose.pose.orientation.w = 1.0 

         
 # Add the target object to the scene 
 scene.add_box(target_id, target_pose, target_size) 

Here we set the pose of the target so that it sits on the table in between the two boxes.  

We then add the target to the scene using the add_box() function. 

  # Set the support surface name to the table object   
right_arm.set_support_surface_name(table_id) 

. 

With the objects added to the scene, we set the table as the support surface for pick and 

place operations.  This allows MoveIt! to ignore a collision warning when placing the 

object back on the table. 
 # Specify a pose to place the target after being picked up  
place_pose = PoseStamped() 
 place_pose.header.frame_id = REFERENCE_FRAME  
place_pose.pose.position.x = 0.18  
place_pose.pose.position.y = -0.18 
 place_pose.pose.position.z = table_ground + table_size[2] + target_size[2] /  
2.0 
 place_pose.pose.orientation.w = 1.0 

Next we specify the location where we want the target object to be placed after it is 

grasped by the robot.  The pose defined above is located on the table to the right of the 

right box (as viewed by the robot).  By setting the orientation to the unit quaternion, we 

are also indicating that the object should be placed in the upright position. 

 # Initialize the grasp pose to the target pose  
grasp_pose = target_pose 

The MoveIt! pick operation requires that we provide at least one possible grasp pose for 

the gripper that might work for holding the target object.  In fact, we will provide a 

range of different grasp poses but we start with a pose that matches the target pose. 

 # Shift the grasp pose by half the width of the target to center it  
grasp_pose.pose.position.y -= target_size[1] / 2.0 
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Here we tweak the initial grasp pose a little to the right of the target's center.  The only 

reason we are doing this is that Pi Robot's gripper moves only the right finger while the 

left finger is fixed.  By shifting the grasp pose a little toward the fixed finger, the 

closing of the right finger against the target will result in a more centered grasp.  If you 

are using a parallel gripper with either two servos (one for each finger) or a prismatic 

joint that moves both fingers evenly with a single servo, then this adjustment would not 

be necessary. 

 # Generate a list of grasps  grasps = 
self.make_grasps(grasp_pose, [table_id]) 

As we mentioned earlier, we will generate a range of grasp poses for MoveIt! to try 

during the pick operation.  Here we use a utility function called make_grasps() that 

we will describe in detail later.  The function takes two arguments: the initial grasp pose 

to try and a list of object IDs that the gripper is allowed to touch on its final approach to 

the target.  In this case, we allow it to touch the table.  The make_grasps() function 

returns a list of possible grasp poses for the gripper. 

 for grasp in grasps:      
self.gripper_pose_pub.publish(grasp.grasp_pose)      

rospy.sleep(0.2) 

As explained earlier, it is sometimes helpful to visualize the grasp poses in RViz.  Here 

we publish each pose in rapid succession so we can quickly view the poses if desired. 
 # Track success/failure and number of attempts for pick operation 
 result = None  
n_attempts = 0 
         
 # Repeat until we succeed or run out of attempts  while result != 
MoveItErrorCodes.SUCCESS and n_attempts < max_pick_attempts:      result = 
right_arm.pick(target_id, grasps) 
     n_attempts += 1 
     rospy.loginfo("Pick attempt: " +  str(n_attempts)) 
     rospy.sleep(0.2) 

We have finally reached the block where we attempt to pick up the target object using 

our list of grasp poses.  First we set a flag to test the result that will allow us to abort 

the loop if we find a successful grasp pose.  We also track the number of times 

(n_attempts) that we run through the collection of grasps.  Note that each attempt 

involves a run through the entire grasp list.  Because of random perturbations used in 

the underlying pick and IK algorithms, it often pays to cycle through the list more than 

once if earlier attempts fail. 

The actual pick operation is the line highlighted in bold above.  The pick() function 

takes two arguments: the id of the object to grasp and the list of grasps to try.  If one of 
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the grasps is found to pass all tests for reachability and avoiding collisions, the pick() 

operation returns SUCCESS and allows us to break out of the loop.  A successful 

pick() will move the arm into position while opening the gripper, then close the 

gripper on the target object.  If we exceed the maximum number of attempts we set at 

the top of the script, we also exit the loop. 

If the object is picked up successfully, we turn to the place operation as shown next. 
 # If the pick was successful, attempt the place 
operation    if result == MoveItErrorCodes.SUCCESS:      
result = None      n_attempts = 0 
             
     # Generate valid place poses      

places = self.make_places(place_pose) 

First we reset the result flag and the number of attempts.  We then use the utility 

function make_places() defined later in the script to generate a list of candidate 

poses to place the object.  We give make_places() the desired place_pose we 

defined earlier in the script as an argument.  The function then returns a list of poses 

similar to the target pose but that might vary slightly in position and/or orientation to 

give the IK solver a better chance of succeeding. 

 while result != MoveItErrorCodes.SUCCESS and n_attempts < 
max_place_attempts:      for place in places:          result = 
right_arm.place(target_id, place)          if result == 
MoveItErrorCodes.SUCCESS:              break      n_attempts += 1 
     rospy.loginfo("Place attempt: " +  str(n_attempts))      
rospy.sleep(0.2) 

Here we execute a loop similar to the one we used for pick().  The actual place() 

operation occurs on the line highlighted in bold above.  Unlike the pick() function, 

place() takes a single pose rather than a list of poses as an argument.  So we manually 

cycle through our list of places and run the place() operation on each pose.  If the 

place() operation determines that the object can be successfully moved to the given 

pose, the arm will place the object at that pose and the gripper will release the object. 

That essentially completes the script.  Next we look at the all important 

make_grasps() utility function. 
1     def make_grasps(self, initial_pose_stamped, allowed_touch_objects): 
2         # Initialize the grasp object 
3         g = Grasp() 

 



 

 Arm Navigation using MoveIt! - 390 

4         
5 # Set the pre-grasp and grasp postures appropriately 
6 g.pre_grasp_posture = self.make_gripper_posture(GRIPPER_OPEN) 7        

g.grasp_posture = self.make_gripper_posture(GRIPPER_CLOSED) 
8         
9 # Set the approach and retreat parameters as desired 
10 g.pre_grasp_approach = self.make_gripper_translation(0.01, 0.1, [1.0,  
0.0, 0.0]) 
11 g.post_grasp_retreat = self.make_gripper_translation(0.1, 0.15, [0.0, -1.0, 
1.0]) 
12         
13 # Set the first grasp pose to the input pose 
14 g.grasp_pose = initial_pose_stamped 
15     
16 # Pitch angles to try 
17 pitch_vals = [0, 0.1, -0.1, 0.2, -0.2, 0.3, -0.3] 
18         
19 # Yaw angles to try 
20 yaw_vals = [0] 
21 
22 # A list to hold the grasps 
23 grasps = [] 
24 
25        # Generate a grasp for each pitch and yaw angle 26        

for y in yaw_vals: 
27 for p in pitch_vals: 
28 # Create a quaternion from the Euler angles 
29 q = quaternion_from_euler(0, p, y) 
30                 
31 # Set the grasp pose orientation accordingly 
32 g.grasp_pose.pose.orientation.x = q[0] 
33 g.grasp_pose.pose.orientation.y = q[1] 
34 g.grasp_pose.pose.orientation.z = q[2] 
35 g.grasp_pose.pose.orientation.w = q[3] 
36                 
37                # Set and id for this grasp (simply needs to be unique) 38                

g.id = str(len(grasps)) 
39                 
40 # Set the allowed touch objects to the input list 
41 g.allowed_touch_objects = allowed_touch_objects 
42                 
43 # Don't restrict contact force 
44 g.max_contact_force = 0 
45                 
46 # Degrade grasp quality for increasing pitch angles 
47 g.grasp_quality = 1.0 - abs(p) 
48                 
49 # Append the grasp to the list 
50 grasps.append(deepcopy(g)) 
51                 
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52 # Return the list 
53 return grasps 



 

 Arm Navigation using MoveIt! - 392 

The make_grasps() function was borrowed from Michael Ferguson's chessbox 

package.  A MoveIt! Grasp message requires a pre-grasp posture for the gripper (e.g. 

open), a grasp posture (e.g. closed), a grasp approach vector (the direction the gripper 

should take to approach the target), and a grasp retreat vector (the direction to move the 

gripper once the object is grasped). 

With these requirements in mind, let's now break down the make_grasps() function 

line by line. 

3         g = Grasp() 

First we initialize the variable g as a Grasp object. 
6         g.pre_grasp_posture = self.make_gripper_posture(GRIPPER_OPEN) 
7         g.grasp_posture = self.make_gripper_posture(GRIPPER_CLOSED) 

Next we set the pre_grasp_posture for the gripper to be the open position and the 

grasp posture to be the closed position.  Note that we are using another utility function 

called make_gripper_posture() that is also defined in the script and which we will 

describe later. 

10 g.pre_grasp_ap7proach = self.make_gripper_translation(0.01, 0.1, [1.0, 0.0, 

0.0]) 
11 g.post_grasp_retreat = self.make_gripper_translation(0.1, 0.15, [0.0, -1.0, 
1.0]) 

Here we define the approach and retreat vectors using the 

make_gripper_translation() utility function that will be described below.  That 

function takes three parameters: a minimum distance, a desired distance and a direction 

vector specified as a list with x, y and z components. 

Referring to Line 10 above, the want the gripper to approach along the x-direction, 

[1.0, 0.0, 0.0], which is aligned with the forward direction of the base since the 

robot is standing behind the target.  We want the minimum approach distance to be 1cm 

and the desired approach distance to be 10cm. 

In a similar manner, Line 11 defines a retreat direction upward and to the right, [0.0, 

-1.0, 1.0], since we want to lift the object over one of the boxes and move it to the 

right of that box.  Here we also set a minimum retreat distance of 10cm and a desired 

distance of 15cm. 

14        g.grasp_pose = initial_pose_stamped 

Next we set the grasp_pose of the grasp object to the initial pose that was passed to 

the make_grasps() function as an argument.  Recall that the pose we passed in was 

the same as the target pose. 
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16 # Pitch angles to try 
17 pitch_vals = [0, 0.1, -0.1, 0.2, -0.2, 0.4, -0.4] 
18         
19 # Yaw angles to try 
20 yaw_vals = [0] 

Next we will generate a number of alternate grasp poses with various values for pitch 

and (optionally) yaw angles.   The pitch_vals and yaw_vals lists above indicate the 

angles we will try (in radians).  Note that in this case, we are only going to vary the 

pitch angle.  You could also add a roll parameter if you find it necessary. 

25        # Generate a grasp for each pitch and yaw angle 26        

for y in yaw_vals: 
27 for p in pitch_vals: 
28 # Create a quaternion from the Euler angles 
20                q = quaternion_from_euler(0, p, y) 

For each value of yaw and pitch, we create a quaternion from the two Euler components 

using the quaternion_from_euler function that we imported at the top of the script. 

32 g.grasp_pose.pose.orientation.x = q[0] 
33 g.grasp_pose.pose.orientation.y = q[1] 
34 g.grasp_pose.pose.orientation.z = q[2] 
35 g.grasp_pose.pose.orientation.w = q[3] 

We then set the grasp pose orientation components to those of the computed quaternion. 

38                g.id = str(len(grasps)) 

Every grasp pose requires a unique id so we simply set it to the length of the list of 

grasps which grows by one as we add each grasp. 

41                g.allowed_touch_objects = allowed_touch_objects 

A grasp can be given a list of objects it is allowed to touch.  In our case, we will allow 

the gripper to touch the table if needed on its final approach to the target.  The 

allowed_touch_objects list is passed as an argument to the make_grasps() 

function and recall that we passed the list [table_id] to allow the gripper to touch the 

table. 

44                g.max_contact_force = 0 

If we were controlling a real arm, we would set a reasonable value for the maximum 

contact force but since we are working only in simulation, we set a value of 0. 
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47                g.grasp_quality = 1.0 - abs(p) 

The MoveIt! pick operation expects the grasp pose candidates to be ranked by quality.  

Here we assume that our initial guess (the target pose) has the highest quality (1.0) 

which corresponds to a pitch value of 0.  For other pitch values, we degrade the quality 

by subtracting the absolute value of the pitch from 1.0 which reflects the fact that we 

don't expect high values of pitch to be necessary. 

50                grasps.append(deepcopy(g)) 

Finally, we append the grasp to the list of grasps.  We use the Python deepycopy() 

function to ensure that we add a truly distinct copy of the grasp object g.  Otherwise, 

subcomponents of g might only contain references to a previous version of g as we 

cycle through our loop. 

53        return grasps 

When we have finished generating the list of grasp poses, the list is returned to the 

calling program. 

The make_grasps() function makes use of two additional utility functions, 

make_gripper_posture() and make_gripper_translation().  Let's look at 

these briefly now. 

1 def make_gripper_posture(self, joint_positions): 
2 # Initialize the joint trajectory for the gripper joints 3        

t = JointTrajectory() 
4         
5 # Set the joint names to the gripper joint names 
6 t.joint_names = GRIPPER_JOINT_NAMES 
7         
8        # Initialize a joint trajectory point to represent the goal 9        

tp = JointTrajectoryPoint() 
10         
11        # Assign the trajectory joint positions to the input positions 12        

tp.positions = joint_positions 
13         
14 # Set the gripper effort 
15 tp.effort = GRIPPER_EFFORT 
16         
17        # Append the goal point to the trajectory points 
18        t.points.append(tp) 
19         
20 # Return the joint trajectory 
21 return t 



 

 Arm Navigation using MoveIt! - 395 

The make_gripper_posture() function is fairly self-explanatory and takes a goal 

posture for the gripper given as a list of joint positions and returns a joint trajectory that 

will move the fingers to the desired positions.  In our case, we use the function to turn 

the OPEN and CLOSED postures for the gripper into opening and closing trajectories to 

use when approaching the target object and grasping it once it reached it. 

1 def make_gripper_translation(self, min_dist, desired, vector): 
2 # Initialize the gripper translation object 
3 g = GripperTranslation() 
4         
5 # Set the direction vector components to the input 
6 g.direction.vector.x = vector[0] 
7 g.direction.vector.y = vector[1] 
8 g.direction.vector.z = vector[2] 
9         
10 # The vector is relative to the gripper frame 
11 g.direction.header.frame_id = GRIPPER_FRAME 
12         
13 # Assign the min and desired distances from the input 
14 g.min_distance = min_dist 
15 g.desired_distance = desired 
16         
17        return g 

The make_gripper_translation() function is also fairly self-explanatory.  Recall 

that we used this function to define the approach and retreat vectors for the gripper 

when reaching for the object and then moving it to its new location on the table. 

Finally, we have the make_places() function that was used to generate a number of 

alternative poses to place the grasped object on the table. 

1 def make_places(self, init_pose): 
2 # Initialize the place location as a PoseStamped message 
3 place = PoseStamped() 
4         
5 # Start with the input place pose 
6 place =  init_pose 
7         
8 # A list of x shifts (meters) to try 
9 x_vals = [0, 0.005, 0.01, 0.015, -0.005, -0.01, -0.015] 
10         
11 # A list of y shifts (meters) to try 
12 y_vals = [0, 0.005, 0.01, 0.015, -0.005, -0.01, -0.015]        
13 
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14        # A list of pitch angles to try 
15         
16        pitch_vals = [0] 
17         
18 # A list of yaw angles to try 
19 yaw_vals = [0] 
20 
21 # A list to hold the places 
22 places = [] 
23         
24        # Generate a place pose for each angle and translation 25        

for y in yaw_vals: 
26 for p in pitch_vals: 
27 for y in y_vals: 
28 for x in x_vals: 
29 place.pose.position.x = init_pose.pose.position.x + x 30                        

place.pose.position.y = init_pose.pose.position.y + y 
31                         
32 # Create a quaternion from the Euler angles 
33 q = quaternion_from_euler(0, p, y) 
34                         
35 # Set the place pose orientation accordingly 
36 place.pose.orientation.x = q[0] 
37 place.pose.orientation.y = q[1] 
38 place.pose.orientation.z = q[2] 
39 place.pose.orientation.w = q[3] 
40                         
41 # Append this place pose to the list 
42 places.append(deepcopy(place)) 
43         
44 # Return the list 
45 return places 

As you can see, this function is very similar to the make_grasps() utility that was 

described in detail above.  Instead of returning a list of grasp poses that vary in 

orientation, we are returning a list of place poses that vary in position around the 

desired pose. 

 11.27  Adding a Sensor Controller 

So far we have been adding simulated objects to the MoveIt! planning scene to test 

collision avoidance.  MoveIt! can also use point cloud data from a depth camera to add 

real obstacle information directly into the scene.  Note that this is not the same as 

detecting specific objects for grasping which we will cover later in the chapter and 

again in the following chapter.  MoveIt! simply builds an occupancy grid from depth 

data which allows motion planning to avoid hitting obstacles. 
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MoveIt! uses an octree representation of its 3D environment.  As its name implies, each 

node in an octree has eight child nodes which can be used to represent the eight octants 

around a point in space and provides an efficient way to represent a spatial occupancy 

map.  MoveIt! currently knows how to use point clouds and depth maps to create an 

octree representation of the planning scene.  The setup is quite easy as we now show for 

point clouds. 

First we add a file called sensors_rgbd.yaml to the config subdirectory of our 

robot's MoveIt! configuration package that contains the following lines: 
sensors:  
 - sensor_plugin: occupancy_map_monitor/PointCloudOctomapUpdater 
   point_cloud_topic: 
/camera/depth_registered/points    max_range: 5.0    
frame_subsample: 1    point_subsample: 1    
padding_offset: 0.1    padding_scale: 1.0 
   filtered_cloud_topic: filtered_cloud 

This file defines our collection of sensors through the use of MoveIt! sensor plugins.  In 

this case, we are defining a single plugin that uses the PointCloudOctomapUpdater 

to generate an octree occupancy map.  The plugin expects to subscribe to the topic 

named by the point_cloud_topic parameter which in this case is 

/camera/depth_registered/points.  We then specify parameters for the 

maximum depth range we want to process in meters, sub-sampling rates for the video 

stream (frame_subsample) and point cloud grid (point_subsample).  The 

padding_offset (in centimeters) and padding_scale determine how much of a 

buffer around the robot itself we want to use when creating the self-filter.  The resulting 

point cloud with the robot parts removed is published on the 

filtered_cloud_topic. 

In addition to the sensors_rgbd.yaml configuration file, we also need a launch file 

to load the parameters.  For Pi Robot, this file is called  

pi_robot_moveit_sensor_manager.launch.xml and is located in the launch 

subdirectory of Pi's MoveIt! package.  The contents of the launch file are as follows: 

<launch> 
   <param name="octomap_frame" type="string" value="odom" /> 
   <param name="octomap_resolution" type="double" value="0.05" /> 
   <param name="max_range" type="double" value="1.5" /> 
   <rosparam command="load" file="$(find  
pi_robot_moveit_config)/config/sensors_rgbd.yaml" /> </launch> 

where the parameter octomap_frame specifies the coordinate frame in which this 

representation will be stored. If you are working with a mobile robot, this frame should 
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be a fixed frame in the world.  The octomap_resolution parameter specifies the 

resolution at which this representation is maintained (in meters). 

To test things out, first fire up the OpenNI camera driver for your Kinect or Xtion Pro: 

$ roslaunch rbx2_vision openni_node.launch 

Next bring up Pi Robot in the ArbotiX simulator if it is not already running: 

$ roslaunch rbx2_bringup pi_robot_with_gripper.launch sim:=true 

Now bring up the MoveIt! environment for Pi Robot which includes the sensor manager 

created above: 

$ roslaunch pi_robot_moveit_config move_group.launch 

Finally, bring up RViz with the arm_nav.rviz config file: 

$ rosrun rviz rviz -d `rospack find rbx2_arm_nav`/config/arm_nav.rviz 

Assuming there are objects within view of the camera, the image in RViz should look 

something like this:  
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If you don't see the boxes representing the octomap occupancy grid, check in RViz 

under the Motion Planning display, then open the Scene Geometry settings and ensure 

that the checkbox labeled Show Scene Geometry is checked.  If you move objects in 

front of the camera, the octomap boxes should update accordingly. 

If you were using a real robot, MoveIt! would incorporate this occupancy data when 

computing arm trajectories so as to avoid collisions between the arm and the detected 

objects. 

NOTE: Unless you are explicitly using the octomap data with your robot, it is best to 

turn it off since it consumes a fair bit of CPU power.  To disable the sensor processing, 

edit the sensor launch file we created above (for Pi Robot this is the  

pi_robot_moveit_sensor_manager.launch.xml file) and comment out all the 

lines like this: 

<launch> 
<!-- 
   <param name="octomap_frame" type="string" value="odom" /> 
   <param name="octomap_resolution" type="double" value="0.05" /> 
   <param name="max_range" type="double" value="1.5" /> 
   <rosparam command="load" file="$(find  
pi_robot_moveit_config)/config/sensors_rgbd.yaml" /> 
--> 
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</launch> 

Where the beginning and ending comment characters are shown in bold.  Next, 

terminate your move_group.launch file if it is running, then delete any existing 

sensor parameters before re-running your move_group.launch file: 

$ rosparam delete /move_group/sensors 
$ roslaunch pi_robot_moveit_config move_group.launch 

You only have to do this once since move_group.launch will now no longer set the 

sensor parameters thereby disabling octomap processing. 

 11.28  Running MoveIt! on a Real Arm 

One of MoveIt!'s strengths is that we can run any of the scripts we have already 

developed on a real arm instead of the fake robot with essentially no modifications.  Of 

course, this assumes that the real robot shares the same URDF model as the fake robot 

we have been using.  If you have your own robot arm, the setup steps would be the 

same as we have done for Pi Robot:  

1. Run the MoveIt! Setup Assistant for your URDF model to generate a MoveIt!  

configuration package for your robot. 

2. Test your scripts using the MoveIt! demo mode and fake controllers. 

3. For a more realistic test, run your scripts with a simulated version of your robot 

using the ArbotiX simulator. 

4. Create or test the launch and configuration files for your servo controller.  In 

this book we have shown how to use the arbotix package to control 

Dynamixel servos. 

5. Create the required MoveIt! configuration files and launch files to match the 

trajectory controller used with your real servos,.  We saw how to do this for the 

ArbotiX controllers in the section Configuring MoveIt! Joint Controllers. 

Once your setup files are ready, the launch sequence is as follows: 

1. Run the launch file(s) for your robot. 

2. Run the move_group.launch file from your robot's MoveIt! package. 

3. (Optional) Bring up RViz to monitor your robot's movements on the screen. 
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4. Run your own MoveIt! nodes or scripts to control the robot. 

Before trying some of our demo scripts on the real Pi Robot, let's look at how you might 

modify these files for your own robot. 

 11.28.1  Creating your own launch files and scripts 

Since the details of your robot's launch file(s) as well as the URDF model for your robot 

will not be the same as Pi Robot's, you will need to create and run your own files before 

you can test MoveIt! on a real robot.  The best way to do this is to create your own 

package(s) for use with your robot.  You can then copy over some of the files from the 

rbx2 repository to use as templates if desired.  

 11.28.2  Running the robot's launch files 

Before running the various test scripts in the following sections, we'll assume you have 

run the startup file(s) for your robot's controllers as well as the appropriate 

move_group.launch file from your robot's MoveIt! package.  For Pi Robot, the two 

commands would be: 

$ roslaunch rbx2_bringup pi_robot_with_gripper.launch sim:=false 

followed by: 

$ roslaunch pi_robot_moveit_config move_group.launch 

To protect the servos from overheating, we will also run the monitor_dynamixels 

node we created in Chapter 6: 

$ roslaunch rbx2_diagnostics monitor_dynamixels.launch 

These launch files can stay running indefinitely as long as you are connected to your 

robot. 

While not necessary when using the real robot, you can also bring up RViz: 

$ rosrun rviz rviz -d `rospack find rbx2_arm_nav`/config/arm_nav.rviz 

Or use your own choice of configuration file. 
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 11.28.3  Forward kinematics on a real arm 

Let's begin with the moveit_fk_demo.py we ran earlier.   Note that you will probably 

have to change the target pose as defined by the joint_positions array unless your 

robot's arm is identical to Pi Robot's.  You will probably also have to change the named 

poses (e.g. "resting" and "straight_forward") or comment out those lines. 

As with any new script, it's best to test it first with a simulated version of your robot, 

either using the MoveIt! demo.launch file for your robot or the ArbotiX simulator 

with a configuration file customized for your robot. 

When you are ready, you can run the script the same way with the real robot.  In Pi 

Robot's case we would run the moveit_fk_demo.py script exactly the same way we 

did with the simulated robot: 

$ rosrun rbx2_arm_nav moveit_fk_demo.py 

Hopefully your robot's arm will move in the desired way.  When the script has finished, 

it is a good idea to relax all the servos to let them cool down.  If you are using  

Dynamixel servos and the arbotix package, you can use the following command: 

$ rosrun rbx2_dynamixels arbotix_relax_all_servos.py 

 11.28.4  Inverse kinematics on a real arm 

Before running your copy of the moveit_ik_demo.py script, be sure to pick a target 

pose for the end effector that is reachable by your robot's gripper.  Recall that in the 

original script, the target pose is defined by the block: 

    target_pose = PoseStamped() 
    target_pose.header.frame_id = reference_frame     
target_pose.header.stamp = rospy.Time.now()         
target_pose.pose.position.x = 0.20     
target_pose.pose.position.y = -0.1     
target_pose.pose.position.z = 0.85     
target_pose.pose.orientation.x = 0.0     
target_pose.pose.orientation.y = 0.0     
target_pose.pose.orientation.z = 0.0     
target_pose.pose.orientation.w = 1.0 

This pose is 85cm above the base_footprint, 20cm ahead of center and 10cm to the right 

of center.  These numbers will have to be adjusted to create a pose that is attainable by 

your robot's arm and gripper.  One way to do this is as follows: 
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• make sure the arm's servos are in the relaxed state.  If you are using the ArbotiX 

package, you can run the arbotix_relax_all_servos.py script. 

• position the gripper manually at the desired target position and orientation 

• run the get_arm_pose.py script we introduced earlier 

$ rosrun rbx2_arm_nav  

You can now release the arm and read off the desired position and orientation 

components from the screen.  Copy and paste these values into your script for the target 

pose. 

As in the previous section, it's best to test things out with a simulated version of your 

robot, either using the MoveIt! demo.launch file for your robot or the ArbotiX 

simulator with a configuration file customized for your robot. 

When you are ready, you can run the script the same way with the real robot.  In Pi 

Robot's case we would run: 

$ rosrun rbx2_arm_nav moveit_ik_demo.py 

When the arm has gone through its paces, relax the servos: 

$ rosrun rbx2_dynamixels arbotix_relax_all_servos.py 

 11.28.5  Cartesian paths on a real arm 

The moveit_cartesian_demo.py script will also require some tweaking to match 

the particulars of your robot and MoveIt! configuration file.  In particular, the included 

script references the two saved poses "straight_forward" and "resting" which you might 

not have defined in your MoveIt! configuration.  You might also have to modify the 

waypoint values so that the target poses are within reach of your robot's arm. 

In the case of Pi Robot, we can run exactly the same script for the real robot as we did 

for the fake robot: 

$ rosrun rbx2_arm_nav moveit_cartesian_demo.py 

 11.28.6  Pick-and-place on a real arm 

In the simulated moveit_pick_and_place.py demo, we know the exact pose of the 

fake target object since we placed it in the scene programmatically.  Similarly, we know 

the pose of the virtual table and obstacles.  In a real pick-and-place task, the robot 
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would use its 3D vision to identify the shape and pose of the target in the real world.  It 

would also identify the table and other objects as obstacles to be avoided when moving 

the arm. 

The segmentation of the visual scene into discrete objects and support surfaces if often 

called "object detection" or "the perception pipeline".  The term "object recognition" is 

reserved for cases where we actually match particular objects to stored models such as a 

mug, a bowl or a stapler.  The programming details underlying these perception 

processes are outside the scope of this volume.  However, we can still use ROS 

packages created by others to give our robot the basic perceptual abilities required to 

execute a real pick-and-place task. 

We will run through a full pick-and-place example in the next chapter on Gazebo after 

learning how to use the object detection pipeline created for the UBR-1 robot.  As we 

will see, the UBR-1 perception pipeline can be run as a standalone process so that we 

can use it with our own robot to detect the pose of a target object sitting on a table top.  

The target pose will then be used more-or-less directly with our existing pick-and-place 

code to control the robot's arm to grasp the object and move it to another location on the 

table. 

 11.28.7  Pointing at or reaching for a visual target 

We can also try the arm_tracking.py script we introduced earlier in the chapter.  

Instead of the fake target that we used in the simulation, we will use the 

nearest_cloud.py node introduced earlier so that the arm will tend to point at or 

reach for the object nearest to the camera. 

Assuming you still have your launch files and MoveIt! nodes running for your robot, 

bring up the OpenNI node for the depth camera: $ roslaunch rbx2_vision 

openni_node.launch Next run the nearest_cloud.py node: 

$ roslaunch rbx2_vision nearest_cloud.launch 

Before starting the arm tracker, we need to run the head tracker node so that the robot 

will keep the depth camera pointed at the nearest object.  Notice how we set the sim 

argument to false in the command below: 

$ roslaunch rbx2_dynamixels head_tracker.launch sim:=false 

Finally, start up the arm_tracker.py node: 
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$ rosrun rbx2_arm_nav arm_tracker.py 

If all goes well, the robot should periodically update the position of his arm so that the 

gripper more or less reaches toward the nearest object positioned in front of the camera 

(but at least 0.5 meters away). 

For extra bonus points, it is left to the reader to improve the arm_tracker.py script 

by setting the gripper orientation so that it actually points directly at the target rather 

than always been set to a horizontal orientation as it is now.  For example, if the target is 

above the level of the shoulder, not only will the arm reach upward as it does now, but 

the gripper will also angle upward toward the target. 

 11.29  Creating a Custom Fast IK Plugin 

While the default KDL inverse kinematics solver works fairly well, it uses a numerical 

iterative process that is not particularly fast and may fail to find a solution at all.  To 

compute IK solutions more quickly, we can build a custom analytic solver using 

OpenRAVE.  Thanks to the work of Dave Coleman, an OpenRAVE IK solver can be 

created and plugged into MoveIt! fairly easily. 

The latest instructions can always be found in the IK Fast Tutorial on the MoveIt! wiki.  

We provide the essential steps here. 

First make sure you install all the key ingredients using the following commands: 

$ sudo apt-get install ros-indigo-moveit-ikfast 
$ sudo add-apt-repository ppa:openrave/release 
$ sudo apt-get update 
$ sudo apt-get install openrave0.8-dp-ikfast 

NOTE: You will probably need the following hack reported by MoveIt! users:  

The file /usr/lib/python2.7/dist-packages/openravepy/__init__.py 

needs to be edited as follows.  Since this is a system file, you will need to use sudo 

before your edit statement.  For example: 

$ cd /usr/lib/python2.7/dist-packages/openravepy/ 

$ sudo gedit __init__.py  

Just before the first def statement, add the following line: 

__openravepy_version__ = "0.8" 

Save the changes and exit the editor.  That should do it! 
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OpenRAVE requires that the robot model is in Collada format.  To convert your robot's 

URDF model to Collada format, you can use the collada_urdf utility.  For Pi Robot 

we would run: 

$ roscd rbx2_description/urdf/pi_robot 
$ rosrun collada_urdf urdf_to_collada pi_robot.urdf pi_robot.dae 

After a brief delay, you should see the message: 
Document successfully written to pi_robot.dae  

The next command rounds the decimal values in the Collada file to 5 places.  This 

makes it easier for OpenRAVE to find an IK solution for the model: 

$ rosrun moveit_ikfast round_collada_numbers.py pi_robot.dae 
pi_robot_rounded.dae 5 

To verify the links in the rounded model, run the command: 

$ /usr/bin/openrave0.8-robot.py pi_robot_rounded.dae --info links 

which should produce an output like the following: 

name                                     index parents                                 --
------------------------------------------------------------------------------------- 
base_footprint                           0                                             base_link                                
1     base_footprint                          base_l_wheel_link                        2     
base_link                               base_r_wheel_link                        3     
base_link                               torso_link                               4     
base_link                               head_base_link                           5     
torso_link                              head_pan_servo_link                      6     
head_base_link                          head_pan_bracket_link                    7     
head_pan_servo_link                     head_tilt_servo_link                     8     
head_pan_bracket_link                   head_tilt_bracket_link                   9     
head_tilt_servo_link                    camera_link                              10    
head_tilt_bracket_link                  camera_depth_frame                       11    
camera_link                             camera_depth_optical_frame               12    
camera_depth_frame                      camera_rgb_frame                         13    
camera_link                             camera_rgb_optical_frame                 14    
camera_rgb_frame                        right_arm_base_link                      15    
torso_link                              right_arm_shoulder_F2_0_link             16    
right_arm_base_link                     right_arm_shoulder_pan_link              17    
right_arm_shoulder_F2_0_link            right_arm_shoulder_F3_0_link             18    
right_arm_shoulder_pan_link             right_arm_shoulder_lift_link             19    
right_arm_shoulder_F3_0_link            right_arm_shoulder_F3_1_link             20    
right_arm_shoulder_lift_link            right_arm_shoulder_roll_link             21    
right_arm_shoulder_F3_1_link            right_arm_shoulder_roll_F3_0_link        22    
right_arm_shoulder_roll_link            right_arm_shoulder_roll_F9_0_link        23    
right_arm_shoulder_roll_F3_0_link       right_arm_elbow_F3_0_link                24    
right_arm_shoulder_roll_F9_0_link       right_arm_elbow_flex_servo_link          25    
right_arm_elbow_F3_0_link               right_arm_elbow_flex_link                26    
right_arm_elbow_flex_servo_link         right_arm_forearm_F3_0_link              27    
right_arm_elbow_flex_link               right_arm_forearm_flex_servo_link        28    
right_arm_forearm_F3_0_link             right_arm_forearm_flex_link              29    
right_arm_forearm_flex_servo_link       right_arm_forearm_F2_0_link              30    
right_arm_forearm_flex_link             right_arm_wrist_flex_link                31    
right_arm_forearm_F2_0_link             right_arm_wrist_F3_0_link                32    
right_arm_wrist_flex_link               right_arm_gripper_attach_link            33    
right_arm_wrist_F3_0_link               right_gripper_base_link                  34    
right_arm_gripper_attach_link           right_gripper_active_finger_bracket_link 35    
right_gripper_base_link                 right_gripper_active_finger_link         36    
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right_gripper_active_finger_bracket_link right_gripper_link                       37    
right_gripper_base_link                 right_gripper_static_finger_bracket_link 38    
right_gripper_base_link                 right_gripper_static_finger_link         39    
right_gripper_static_finger_bracket_link ------------------------------------------------
---------------------------------------  

To generate the IK Fast solver for the right arm, run the following command: 

$ python `openrave0.8-config \ 
--python-dir`/openravepy/_openravepy_0_8/ikfast.py \ 
 --robot=pi_robot_rounded.dae --iktype=transform6d \ 

 --baselink=15 --eelink=37 --savefile=output_ikfast61.cpp NOTE: 

Don't worry if you see a number of warnings like this: 

[plugindatabase.h:392] /usr/share/openrave-0.8/plugins doesn't exist  
[plugindatabase.h:573] Failed to create name ode, interface collisionchecker  
[plugindatabase.h:573] Failed to create name bullet, interface collisionchecker  
[plugindatabase.h:573] Failed to create name pqp, interface collisionchecker  
[plugindatabase.h:573] Failed to create name IdealController, interface 
controller  
/usr/lib/python2.7/dist-packages/openravepy/_openravepy_0_8/ikfast.py:1122:  
RuntimeWarning: invalid value encountered in divide   
axisangle /= angle  

These messages can be ignored. 

In the command above, the iktype parameter specifies the type of OpenRAVE IK 

solver we want to use.  The transform6d type is the standard solver for an arm with 6 

degrees of freedom.  OpenRAVE includes many other types of IK solvers for different 

types of arms and other kinematic chains.  The baselink and eelink parameters refer 

to the link indexes appearing in the earlier link list ; baselink corresponds to the base 

of the planning group and eelink refers to the end effector.  We use the 

right_arm_base_link link for the baselink parameter (index = 15) and the 

right_gripper_link for the eelink parameter (index = 37).  Recall that the 

right_gripper_link is actually a virtual link defined in Pi Robot's URDF model 

located in between the two finger links.  The savefile parameter specifies the 

filename for the final C++ solution file. 

This process might take awhile—up to 15 minutes or more depending on the speed of 

your computer and the complexity of the arm.  During that time you will see an output 

similar to the following: 

INFO: moved translation [0, 0, 0] to right end  
INFO: moved translation [0, 0, 1/500] to left end  
INFO: moved translation on intersecting axis [0, 0, 0] to left  
INFO: [[-1, 0, 0, -3/25],[0, -1, 0, -1/20],[0, 0, 1, 85541/100000]]  
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INFO: [[cos(j4), -sin(j4), 0, 0],[sin(j4), cos(j4), 0, 0],[0, 0, 1, 0]]  
INFO: [[-1, 0, 0, 0],[0, 0, -1, 29/500],[0, -1, 0, 0]]  
INFO: [[cos(j5), -sin(j5), 0, 0],[sin(j5), cos(j5), 0, 0],[0, 0, 1, 0]]  
INFO: [[0, -1, 0, 0],[0, 0, -1, 239/4000],[1, 0, 0, 0]]  
INFO: [[cos(j6), -sin(j6), 0, 0],[sin(j6), cos(j6), 0, 0],[0, 0, 1, 0]]  
INFO: [[1, 0, 0, 9/1000],[0, 0, -1, 11/2000],[0, 1, 0, -271/4000]]  
INFO: [[cos(j7), -sin(j7), 0, 0],[sin(j7), cos(j7), 0, 0],[0, 0, 1, 0]]  
INFO: [[0, 0, -1, 0],[0, 1, 0, -141/2000],[1, 0, 0, 0]]  
INFO: [[cos(j8), -sin(j8), 0, 0],[sin(j8), cos(j8), 0, 0],[0, 0, 1, 0]]  
INFO: [[0, 0, -1, 0],[0, -1, 0, -213/4000],[-1, 0, 0, 0]]  
INFO: [[cos(j9), -sin(j9), 0, 0],[sin(j9), cos(j9), 0, 0],[0, 0, 1, 0]]  
INFO: [[0, 1, 0, -3/200],[1, 0, 0, 111/1000],[0, 0, -1, 0]]  
INFO: ikfast 6d: [j4, j5, j6, j7, j8, j9]  
INFO: found 3 consecutive non-intersecting axes links[0:5], vars=[j4, j5, j6]  
INFO: attempting li/woernle/hiller general ik method  
WARNING: 'need exactly 8 equations of one variable' etc. 

The series of INFO statements track the progress of OpenRAVE as it creates an analytic 

solver for the inverse kinematics of your robot's arm.  If successful, you will see the 

following final statement: 

INFO: generating cpp code... 

And you will have a new file called output_ikfast61.cpp in the current directory.  

We now turn this C++ file into a  MoveIt! plugin using the following steps. 

First, create a package for holding the IKFast plugin: 

 

Next, create the actual plugin using the following commands: 

$ roscd rbx2_description/urdf/pi_robot 
$ rosrun moveit_ikfast create_ikfast_moveit_plugin.py \ 

pi_robot right_arm pi_robot_ikfast_right_arm_plugin \ 
`pwd`/output_ikfast61.cpp 

Before building the plugin with catkin_make, we need to fix a small bug in the plugin 

source code.  By the time you read this, the bug might already be fixed but check 

anyway.  First move into the new plugin source directory: 

$ roscd pi_robot_ikfast_right_arm_plugin/src 

$ cd ~/catkin_ws/src 
$ catkin_create_pkg pi_robot_ikfast_right_arm_plugin 
$ cd ~/catkin_ws 
$ catkin_make 
$ rospack profile 
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Now bring up the plugin source file for editing: 

$ gedit pi_robot_right_arm_ikfast_moveit_plugin.cpp 

Search for the string "IKTYPE_TRANSFORM_6D" (all caps) and comment out the 

corresponding #ifndef block.  So the existing block: 

#ifndef IKTYPE_TRANSFORM_6D  
  ROS_ERROR_NAMED("ikfast", "Can only compute FK for IKTYPE_TRANSFORM_6D!");  
  return false; #endif 

Becomes: 
/*  

#ifndef IKTYPE_TRANSFORM_6D  
  ROS_ERROR_NAMED("ikfast", "Can only compute FK for  

IKTYPE_TRANSFORM_6D!");  
  return false;  
#endif  

*/ 

If you don't find this block, then the bug has already been fixed and you can simply exit 

the editor.  Otherwise, save the changes and exit. 

Now build the plugin: 

 

If the IKFast plugin builds without errors after issuing the catkin_make command 

above, the output should include a line similar to the following near the end: 

Linking CXX shared library  

/home/patrick/catkin_ws/devel/lib/libpi_robot_right_arm_moveit_ikfast_plugin.so  

In the meantime, you will find that the file kinematics.yaml in the config 

subdirectory of your MoveIt! configuration package has been changed to look like the 

following: 

right_arm:   kinematics_solver: 
pi_robot_right_arm_kinematics/IKFastKinematicsPlugin   
kinematics_solver_attempts: 3   kinematics_solver_search_resolution: 
0.005   kinematics_solver_timeout: 0.05 

Note how the kinematics solver now points to the custom IKFast solver rather than the 

KDL solver.  To go back to the KDL solver at some point, simply comment out the 

$ cd ~/catkin_ws 
$ catkin_make 
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IKFast line above and add the following line instead. kinematics_solver: 

kdl_kinematics_plugin/KDLKinematicsPlugin Then restart the 

move_group.launch file if it is already running. 

We are now ready to test the new IK solver using the ArbotiX simulator.  First, bring up 

the fake version of Pi Robot and the appropriate move group launch file : 

$ roslaunch rbx2_bringup pi_robot_with_gripper.launch sim:=true 

$ roslaunch pi_robot_moveit_config move_group.launch 

Next, bring up RViz with the arm_nav.rviz config file: 

$ rosrun rviz rviz -d `rospack find rbx2_arm_nav`/config/arm_nav.rviz 

Finally, try running the moveit_obstacle_demo.py script we tested earlier: 

$ rosrun rbx2_arm_nav moveit_obstacles_demo.py 

If all goes well, Pi should move his arm to place the gripper in between the two boxes 

on the table, then move it back to the resting position. 

At this point, you might also try running the moveit_contraints_demo.py script 

again to see how much faster the IKFast solver is able to move the arm while keeping 

the gripper orientated horizontally. 
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 12.  GAZEBO: SIMULATING WORLDS AND 

ROBOTS 

Up until now we have been using the ArbotiX fake simulator to test our ROS nodes 

before trying things out on a real robot.  The fake simulator is fast and easy to use but it 

has its limitations.  For one thing, it does not simulate the actual physics (e.g. inertia, 

force, damping, friction, etc), nor does it provide a way to simulate objects in the world.  

Sometimes we would also like to simulate the data returned from sensors such as a laser 

scanner or depth camera as the robot moves around a simulated environment.  

Enter Gazebo, the sophisticated open source 3D simulator originally developed by Nate  

Koenig and Andrew Howard in 2002 as part of the Player project founded by Brian  

Gerkey, Richard Vaughan and Andrew Howard at the University of Southern  

California at Los Angeles.  In 2011, Gazebo became an independent project under 

Willow Garage where it played an integral role in the development of ROS and the PR2 

robot.   Gazebo is now actively developed by the Open Source Robotics Foundation 

(OSRF) where Gerkey and Koenig serve as CEO and CTO respectively. 

Gazebo not only provides a state-of-the-art physics engine, it also enables the creation 

of complex 3-dimensional virtual environments (called "worlds") for a simulated robot 

to play around in.  If someone has created a fully configured Gazebo model of the robot 

we are interested in, then we can test a number of real-world properties such as the 

robot's momentum and inertia when trying to stop or accelerate, or the friction between 

a gripper and an object being grasped.  We can also test bump sensors when running 

into things, cliff sensors when nearing an edge, or even perform a full blown SLAM 

experiment with a simulated laser to create a map of the robot's simulated environment. 

Gazebo can also be used to prototype a new robot before it is even built, or learn how to 

operate a virtual copy of an expensive robot that only few can use in person such as the 

Willow Garage PR2, Baxter from Rethink Robotics, the Husky from Clearpath 

Robotics, the NASA-GM Robonaut 2, or the UBR-1 from Unbounded Robotics. 

In this Volume, we will be learning only the basics of how to use Gazebo as an end-user 

rather than a developer.  Therefore, before we can use Gazebo with a particular robot, 

someone needs to do the work of creating a Gazebo-compatible URDF file for the robot 

as well as the harder task of configuring or programming Gazebo control plugins for the 

various sensors and actuators used by the robot.  Although this process is not covered in 

this Volume, you can learn about the details online using the newly written Gazebo  

Tutorials.  Fortunately for us, we can use two ready made Gazebo-ized robots: the  
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Kobuki robot (a.k.a TurtleBot 2) from Yujin Robot and the ultra cool UBR-1 robot from 

the ROS wizards at Unbounded Robotics.  After walking through the installation of the 
Gazebo simulator as well as the models for the Kobuki and UBR-1, we will try out a few 

simulations. 

 12.1  Installing Gazebo 

As of this writing, the latest version of Gazebo is 3.0 but we will be installing the 

version that ships with ROS Indigo which is 1.9.  Follow the installation instructions on 

the Gazebo Wiki for your version of Ubuntu.  After completing the installation, test the 

basic functionality by starting the Gazebo server: 

 

You should see some startup messages that look something like this: 

Gazebo multi-robot simulator, version 1.9.5 
Copyright (C) 2014 Open Source Robotics Foundation.  
Released under the Apache 2 License. 
http://gazebosim.org  

Warning [ModelDatabase.cc:335] Getting models 
from[http://gazebosim.org/models/]. This may take a few seconds.  
Msg Waiting for master  
Msg Connected to gazebo master @ http://127.0.0.1:11345  
Msg Publicized address: x.y.z.w 

The server will then continue to run in the foreground. 

Open another terminal window and run the Gazebo client to bring up the GUI: 

 

If all goes well, the Gazebo GUI should appear which looks like the following: 

$ gzserver 

$ gzclient 
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As you can see above, the default world is empty.  Once we install some robot models, 

we can try out a few simulations. 

NOTE: If the GUI crashes and the window above does not appear, see the next section 

on the use of hardware acceleration. 

 12.2  Hardware Graphics Acceleration 

Gazebo requires a fair bit of horsepower to run the physics and graphics engines but it is 

designed to make use of GPU hardware acceleration (if it is available on your 

computer) to reduce the load on the CPU.  However, on some machines, hardware 

acceleration can cause the Gazebo GUI to crash, similar to what we sometimes find 

with RViz. 

If you turned off hardware acceleration earlier in the book because of problems with 

RViz crashing, it is a good idea to try turning it on again when running Gazebo just in 

case it works.  To make sure hardware acceleration is on, run the following command: 

 

Terminate any gzserver or gzclient processes you might have already running, then 

bring up the server and client together with the command; 

 

$ unset LIBGL_ALWAYS_SOFTWARE  

$ gazebo 
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If the Gazebo GUI appears without trouble, then you are good to go.  If it starts to come 

up and then crashes, try running the gazebo command again two or three times.  (For 

some reason, the GUI will sometimes fail to come up on the first attempt but then run 

fine on a subsequent launch.)  If all such attempts fail, terminate any running ROS 

processes including roscore.  Then restart roscore and try the gazebo command a 

few more times. 

If all attempts fail, try turning off hardware acceleration: 

$ export LIBGL_ALWAYS_SOFTWARE=1 

This will almost always solve the problem although at the cost of consuming more CPU 

cycles.  If this works for you, place the above command at the end of your ~/.bashrc 

file (if you haven't already) so it will be run each time you open a new terminal. 

 12.3  Installing the ROS Gazebo Packages 

Gazebo is a standalone simulator that can be used independently of ROS but it also 

plays very nicely with ROS topics and services.  To make the two work together, we 

only need to install a few Gazebo-related ROS packages.  However, first make sure you 

remove any older Gazebo packages from previous ROS versions you might have on 

your machine: 

$ sudo apt-get remove ros-fuerte-gazebo* 
$ sudo apt-get remove ros-groovy-gazebo* 

Now install the new packages for ROS Indigo: 

$ sudo apt-get install ros-indigo-gazebo-ros \ ros-indigo-gazebo-ros-
pkgs ros-indigo-gazebo-msgs \ ros-indigo-gazebo-plugins ros-indigo-
gazebo-ros-control 

To test your Gazebo ROS installation, run the empty_world.launch file from the 

gazebo_ros package: 

$ roslaunch gazebo_ros empty_world.launch 

If successful, you should eventually see the Gazebo GUI with an empty world.  If the 

launch process crashes on the first attempt, type Ctrl-C and try again two or three 

times.  If it keeps on crashing, see the previous section on turning off hardware 

acceleration. 
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 12.4  Installing the Kobuki ROS Packages 

Even if you do not own a Kobuki, you can still install the Kobuki ROS packages and 

test the robot in Gazebo.  The following command will install everything we need for 

the Kobuki robot under ROS Indigo: 

$ sudo apt-get install ros-indigo-kobuki-* 
$ rospack profile 

NOTE: The Kobuki Gazebo package provides a model of the Kobuki's base only 

without a Kinect depth camera. 

 12.5  Installing the UBR-1 Files 

Unbounded Robotics has published open source ROS packages for both Gazebo and 

MoveIt!  To install everything we need you'll need to install two supporting Debian 

packages and then clone the ubr1_preview repository and build the source.   Here are 

the required steps: 

$ cd ~/catkin_ws/src 
$ sudo apt-get install ros-indigo-grasping-msgs ros-indigo-moveit-python 
$ git clone https://github.com/pirobot/ubr1_preview 
$ cd ~/catkin_ws 
$ catkin_make 

If all goes well, the last build message you should see on the screen is: 

[100%] Built target ubr1_gazebo_controllers 

 12.6  Using the Gazebo GUI 

For a complete guide on how to use the controls in the Gazebo GUI, see the online 

Gazebo User Guide where you can see a clearer image of the GUI.  The basic layout of 

the controls is shown below: 
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One of the more frequently used menu items is the Reset Model Poses command found 

under the Edit menu.  This will return the robot and any objects to the poses they had 

when the simulation was first started.  The Reset World menu item does the same thing 

but also resets the clock. 

NOTE:  When using RViz, we use the left mouse button to move the camera in orbit 

mode.  However, Gazebo uses the middle mouse button for this same function.  On 

many mice, the middle mouse button is also a scroll wheel so it can some times be a 

little tricky to move the camera in this way.  For a laptop with only two buttons, press 

both buttons together to emulate the middle mouse button. 

Another important feature is the ability to move objects around within the world.  The 

User Guide includes a handy cheat sheet that charts the different mouse and key 

combinations and how they can be used to translate or rotate objects along different 

axes.  We have include a copy of that chart below.  For example, to lift an object upward 

(along the z-axis), first click on the translate control  on the toolbar, then hold down 

the z key on your keyboard while using the left mouse button to move the object up or 

down. 
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 12.7  Missing Model Bug in Gazebo 1.9 

The User Guide explains how to insert object models into the scene.  Most of these 

models are stored in an online database at http://gazebosim.org/models but are then 

cached in your ~/.gazebo directory when used for the first time.  If a Gazebo world 

references a model that is not already available in your cache, the model is supposed to 

be automatically downloaded from the online database.  However, in Gazebo version 

1.9 there is a bug that prevents this from working properly.  Since this bug will affect 

our Kobuki simulation, we need to know about the workaround. 

In the next section we will bring up the Kobuki robot in Gazebo along with a world that 

includes a collection of tables and a number of cinder blocks to act as obstacles.  The 

tables are put together from materials that already exist in the media files that are 

included in original Gazebo installation.  However, the cinder blocks are defined by a 

Collada mesh file that resides in the online database at http://gazebosim.org/models.  

Because of the bug in Gazebo 1.9, this mesh file will not be automatically downloaded 

when we try to load the Kobuki world for the first time. 

To get around the bug, we have to manually insert the model into a scene (any scene) in 

Gazebo.  Gazebo will then download the model into your local cache where it will be 

accessible to any world that is subsequently loaded. 

Let's perform this manual insert for the cinder block now so we have it available for our 

Kobuki simulation in the next section.  If the Gazebo GUI is not already up and 

running, bring it up now with an empty world: 

 
When the GUI window appears, click on the Insert tab and wait until the connection to 

the online database is complete.  You should then be able to open the list of models 

$ gazebo 
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under the section labeled http://gazebosim.org/models and select the Cinder Block as 

shown below: 

 

After selecting the Cinder Block, move the mouse anywhere into the empty scene and 

the block will appear under the cursor.  Click the left mouse to place the block into the 

scene as shown below: 

 
Note how the Cinder Block now also appears under the cached models listed under 

/home/yourname/.gazebo/models on the Insert tab.  This confirms that the model is 

now locally available and will be loaded automatically by any world that requires it 

later on. 
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 12.8  Testing the Kobuki Robot in Gazebo 

The Kobuki Gazebo package comes with a world that includes a collection of tables 

with the robot and a number of cinder blocks sitting on top.  To bring up Gazebo with 

the Kobuki and this world terminate any running Gazebo instances and run the 

following launch file: 

$ roslaunch kobuki_gazebo kobuki_playground.launch 

When the robot and world have been loaded, the Gazebo screen should look like this: 

 

As you can see, the world consists of a number of tables with the Kobuki and three 

cinder blocks sitting on top of them. 

Try clicking on the translate  or rotate   control on the toolbar and then using 

your mouse (left click) to move a table, block or the robot.  Use the middle mouse 

button to rotate the camera view.  The image below shows the scene after one of the 

tables has been moved to create a gap:  
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We can now try to control the robot using standard ROS commands.  But first we need 

to know the topics and services used by the simulated robot.  Get the list of current 

topics by running the command: 

 

which should produce the following output: 

/clock  
/gazebo/link_states  
/gazebo/model_states  
/gazebo/parameter_descriptions  
/gazebo/parameter_updates  
/gazebo/set_link_state  
/gazebo/set_model_state  
/joint_states 
/mobile_base/commands/motor_power  
/mobile_base/commands/reset_odometry  
/mobile_base/commands/velocity  
/mobile_base/events/bumper  
/mobile_base/events/cliff  
/mobile_base/sensors/imu_data  
/odom  
/rosout  
/rosout_agg  
/tf 

Here we can guess that the most of the Kobuki-related topics live under the namespace  

$ rostopic list 
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/mobile_base.  The topic /mobile_base/commands/velocity accepts Twist  

messages to control the base.  The /mobile_base/events/cliff and 

/mobile_base/events/bumper topics register events from the cliff and bumper 

sensors.  The standard /odom topic is used to publish the robot's odometry data. 

Since the Kobuki expects Twist commands on the topic  

/mobile_base/command/velocity instead of /cmd_vel, try moving the robot 

forward at 0.2 meters per second by running the following command: 

$ rostopic pub -r 10 /mobile_base/commands/velocity geometry_msgs/Twist 
'{linear: {x: 0.2}}'  

You should see the robot move across the table and fall off the edge where we created 

the gap.  To keep the poor robot from bouncing around on the floor (or driving out of 

the scene if it landed on its wheels), type Ctrl-C to kill the rostopic command and 

then click on the Edit menu in the Gazebo GUI and select Reset Model Poses. 

Since a real Kobuki robot is equipped with cliff sensors, why did the simulated robot 

drive off the edge of the table?  The Kobuki's Gazebo model includes plugins for the 

cliff sensors and they do detect the drop-off at the edge of the table as we shall see in 

the next section.  However, we have controlled the robot through the topic   

/mobile_base/commands/velocity that is designed to move the robot exactly as 

we ask, regardless of the data coming from the cliff sensors or bumper sensors.  After 

examining the data returned by the simulated sensors in the next section, we will learn 

how to drive the robot more safely. 

 12.8.1  Accessing simulated sensor data 

A real Kobuki robot has three cliff sensors (left, right and center) and three bump 

sensors (left, right and center), and the Kobuki's Gazebo model includes plugins for 

each of these sensors.  This means that the simulated Kobuki can detect when it is about 

to drive off an edge or when it has run into something like a cinder block.  The 

simulated sensor data are published on two ROS topics: 

/mobile_base/events/cliff and /mobile_base/events/bumper. 

You can verify that the simulated cliff sensors are working by monitoring the 

/mobile_base/events/cliff topic using the command: 

$ rostopic echo /mobile_base/events/cliff 

Initially you will see the following output: 
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WARNING: no messages received and simulated time is active.  
Is /clock being published? 

This warning is expected since we are running a simulation, not a real robot, and the 

cliff sensors only publish a message when at least one of them detects a drop-off. 

Now repeat the experiment described in the previous section and set the robot heading 

for a table edge while keeping your eye on the terminal window monitoring the cliff 

messages.  It might help to slow down the speed of the robot so this time change the 

linear speed to 0.1 meters per second: 

$ rostopic pub -r 10 /mobile_base/commands/velocity geometry_msgs/Twist 
'{linear: {x: 0.1}}'  

As the robot passes over the table edge, you should see the following three messages on 

the /mobile_base/events/cliff topic: 

sensor: 1 state: 
1 bottom: 42647  
--- sensor: 0 
state: 1 
bottom: 50660  
--- sensor: 2 
state: 1 
bottom: 42647 
---  

These messages indicate that all three cliff sensors (labeled 0, 1 and 2 in the sensor 

field above) have entered state 1 which means "cliff detected".  The values displayed 

in the bottom field represent the distance to the floor although it is not clear from the 

Kobuki documentation what the units are.  Also, keep in mind that the IR sensors used 

for cliff detection have a range of only 2-15 cm and the table tops are much higher than 

this off the floor. 

To see the definition of the Kobuki cliff message, run the command: 

$ rosmsg show -r kobuki_msgs/CliffEvent 

The -r option stands for "raw" and includes the comments written in the message 

definition file.  The key part of the output is: 

# cliff sensor 
uint8 LEFT   = 0 
uint8 CENTER = 1 
uint8 RIGHT  = 2  
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# cliff sensor state 
uint8 FLOOR = 0 
uint8 CLIFF = 1  

uint8 sensor 
uint8 state  

# distance to floor when cliff was detected 
uint16 bottom  

The message definition indicates that each message has three fields, sensor, state 

and bottom and that the sensor field can values 0, 1 and 2 to indicate the left, center 

and right IR sensors, while the state field takes the value 0 if a floor is detected or 1 if 

a cliff is detected. 

To test the simulated bump sensors, first terminate the velocity publishing command if 

you still have it running.  Then click on the Edit menu in the Gazebo GUI and select 

Reset Model Poses.  You will notice that the robot is now lined up to run into one of the 

cinder blocks. 

 

To monitor the messages on the bump sensors topic, run the command: 

$ rostopic echo /mobile_base/events/bumper 

Set the robot running toward the block: 
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$ rostopic pub -r 10 /mobile_base/commands/velocity geometry_msgs/Twist 
'{linear: {x: 0.2}}'  

Then flip back to the other terminal window and keep an eye out for bumper messages 

while watching the robot in Gazebo.   The moment the robot strikes the block, you 

should see a series of messages on the bumper topic that look like this: 

bumper: 1 
state: 1  
--- 
bumper: 1 
state: 0  
--- 
bumper: 1 
state: 1 -
--  

As with the cliff sensors, the bumpers are numbered 0, 1 and 2 for left, center and right.  

So the message above indicates that the center bumper has struck an object, bounced 

back enough to release the bumper, then struck again as the robot continue to move 

forward.  To see the BumperEvent message definition, run the command: 

$ rosmsg show -r kobuki_msgs/BumperEvent 

# bumper uint8 
LEFT   = 0 
uint8 CENTER = 
1 uint8 RIGHT  
= 2  

# state uint8 
RELEASED = 0 
uint8 PRESSED  = 
1  

uint8 bumper 
uint8 state  

which shows us that there are three sensors that can have a state value of either 0 

(released) or 1 (pressed). 

With the velocity publisher still running, use your mouse to move the robot back away 

from the block but this time aim it so that it strikes the block on either the left or right 

side of the robot.  This time you should see the bumper message indicate that either 

bumper 0 (left) or 2 (right) was depressed. 
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Note that running into an object does not cause the robot to stop*, just like the cliff 

sensors did not automatically stop the robot from plunging off the table.  In the next 

section we'll see how to control the robot more safely. 

(* When the simulated Kobuki runs head on against an object, it does appear to stop.  

However, this is simply because the forward motion is being impeded by the object, not 

because the drive motors have stopped.  As we saw above, the robot actually bounced 

off the cinder block and continued to push against it.) 

 12.8.2  Adding safety control to the Kobuki 

The /mobile_base/command/velocity topic provides direct control over the 

robot's motion while ignoring any data coming from the cliff or bump sensors.  For 

example, you might want the robot to push a box across the floor in which case we don't 

want a bumper press to stop the robot.  But the ROS programmers at Yujin Robot have 

created another control mechanism that will automatically do its best to keep the robot 

from harming itself or others. 

The kobuki_safety_controller monitors events from the Kobuki's cliff, bumper 

and wheel-drop sensors and publishes an appropriate velocity command if any of these 

sensors indicate trouble.  In the case of the cliff and bump sensors, the controller causes 

the robot to stop and back up whereas a wheel-drop event simply causes the robot to 

stop. 

The safety controller works with the yocs_cmd_vel_mux node that we explored in 

Chapter 8.  This node can be easily configured to give the safety controller priority over 

all other velocity commands from other sources such the navigation stack 

(move_base), a teleop node or the command line. 

To see the safety controller in action, first terminate any velocity publishing commands 

you might still have running from an earlier section.  Then reset the test setup in Gazebo 

by clicking on the Edit menu and selecting Reset Model Poses. 

This time, instead of publishing velocity commands directly from the command line, 

let's use the ArbotiX GUI which publishes Twist messages on the standard /cmd_vel 

topic just like our earlier command line examples: 

 
You should see the trackpad control appear as shown on 

the right.  Note that at this point you will not be able to 

control the Kobuki with the trackpad because the 

arbotix_gui publishes Twist messages on the 

$ arbotix_gui 
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/cmd_vel topic while the simulated Kobuki is listening 

on the /mobile_base/commands/velocity topic.  

Now launch the Kobuki safety controller and  

CmdVelMuxNodelet using the following launch file: 

$ roslaunch rbx2_gazebo kobuki_yocs_safety_controller.launch 

This launch file loads the config file yocs_safety_mux.yaml from the directory 

rbx2_gazebo/config.  The file has the same basic layout as the configuration files 

we used in Chapter 8 and is shown below: 
subscribers: 
- name:        "Safe reactive 
controller"    topic:       
"safety_controller"     timeout:     0.2     
priority:    2 
     
- name:        "Joystick control"    
topic:       "/joystick_cmd_vel" 
    timeout:     0.2     
priority:    1 
     
- name:        "Any node that publishes 

directly to /cmd_vel" 
    topic:       "/cmd_vel"     
timeout:     0.2     
priority:    0 
     
publisher:       "output/cmd_vel" 

Note how we have given the safety controller top priority, followed by a joystick node 

that publishes on the /joystick_cmd_vel topic like we used in Chapter 8, then any 

other node that publishes on the standard /cmd_vel topic.  Since the arbotix_gui 

node is publishing on /cmd_vel, you should now be able to control the robot using the 

trackpad; however, you will not be able to drive the robot off the table since the cliff 

sensors will alert the safety controller which in turn will override the input from the 

trackpad.  Give it a try!  (Just don't drive the robot backward over an edge since the 

robot only has cliff sensors in front.)  You can also try driving into the cinder blocks and 

you should see that the safety controller causes the robot to "bounce" by backing it up a 

bit after impact. 

If you have a joystick, you can also add it to the mix by running the launch file: 

$ roslaunch rbx2_nav mux_joystick_teleop.launch 
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Now drive the robot around with the joystick and observe how the safety controller 

keeps you out of trouble. 

 12.8.3  Running the nav_square.py script from Volume 1 

As one final example, let us try one of our navigation scripts from Volume 1 but this 

time using Gazebo instead of the ArbotiX simulator.  Terminate any nodes you might 

have running from earlier sessions including the arbotix_gui.  Assuming you have 

Gazebo running with the Kobuki playground world, either delete the cinder blocks or 

move them off the table, then position the robot as shown below: 

 

The tables in this world are about 1 meter long and half a meter wide so two tables 

together makes a 1 meter square that should nicely accommodate our nav_square.py 

script from the rbx1_nav package.  Notice how we have positioned the robot so that it 

is pointing to the left parallel to the table edge and a couple of inches away from the 

edge behind it.  When your are finished positioning the robot, make sure it is no longer 

selected by clicking on the arrow tool  on the toolbar and selecting anything other 

than the robot.  (If you don't this, the robot will not move when we send motion 

command below.) 

To ensure the robot does not fall of the edge of the table, bring up the safety controller if 

it is not already running: 

$ roslaunch rbx2_gazebo kobuki_yocs_safety_controller.launch 
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Now run the nav_square.py script: 

$ rosrun rbx1_nav nav_square.py 

The robot should do one loop around the perimeter of the table.  If it gets too close to an 

edge, one of the cliff detectors will fire and cause the safety controller to kick in.  The 

robot should then continue on its path. 

NOTE: If you find that the robot simply spins in place when trying to make the first 

turn around the table, chances are the simulator needs to be restarted.  (The author 

noticed on one trial that the simulated odometry had stopped registering rotations on the 

/odom topic.)  Exit the Gazebo GUI then type Ctrl-C in the terminal used to launch 

the Kobuki playground world.  Launch the world again and repeat the experiment 

described above. 

From this demonstration we see how Gazebo can be used to test a robot in a realistic 

environment without even having access to the real robot or even the test setup (e.g. 

tables and cinder blocks in this case.)  Our local robotics club (HBRC) holds a 

"TableBot Challenge" every year where the goal is to program a robot to locate an 

object on the table and move it from one location to another, all while keeping the robot 

from falling off.  Using Gazebo would allow testing different robots and control 

strategies in a variety of environments before risking the robot in what might be a 

potentially expensive process of trial and error learning! 

 12.9  Loading Other Worlds and Objects 

Fortunately for us, other Gazebo users have created a variety of worlds we can use to 

test our robot.  If you are interested in robot soccer, you can load the official RoboCup 

field.  Or you can test your robot in a simulated office, a kitchen, on top of an asphalt 

surface, or even inside a section of the International Space Station! 

To load the Kobuki robot with the RoboCup soccer field, first terminate any running 

Gazebo simulations, then bring up Gazebo and the Kobuki in an empty world: 

$ roslaunch kobuki_gazebo kobuki_empty_world.launch 

When the Gazebo GUI is up, click on the Insert tab.  Here you should see a list of 

models in your local cache as well as those in the database on the gazebosim.org site.  

(It might take a moment or two for the remote database to be loaded.)   Open the remote 

database and select the RoboCup 2009 SPL Field.  It will take a few moments to load, 

then place it in the scene with your mouse and click the left mouse button to drop it in 
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place with the robot somewhere near the center of the field.  Next add a RoboCup 3D 

Simulation Ball using the same technique. 

To test the physics of this world, first make sure you do not have the Kobuki safety 

controller running from an earlier session, then bring up the arbotix_gui while 

remapping the default cmd_vel topic to the Kobuki's 

/mobile_base/commands/velocity topic: 

$ arbotix_gui cmd_vel:=/mobile_base/commands/velocity 

Now test your soccer skills by driving the robot using the simulated track pad and 

attempt to knock the ball into the goal.  If you miss and the ball starts rolling out of the 

field, simply select Reset Model Poses from the Edit menu. 

Try inserting other objects listed under the Insert tab.  If you end up creating a world 

you like, you can save it using the Save World As option under the File menu.  (By 

tradition, Gazebo world files are saved with either a .world or .sdf extension.)  Be 

sure to save the world inside one of your ROS package directories so you can load it 

using a standard launch file later if desired.  For an example of how this is done, take a 

look at the kobuki_playground.launch file in the kobuki_gazebo package: 

$ roscd kobuki_gazebo/launch 
$ cat kobuki_playground.launch 

You can also view it online here. 

 12.10  Testing the UBR-1 Robot in Gazebo 

The UBR-1 robot from Unbounded Robotics is similar to a smaller version of the PR2 

but costs less than 1/10th the amount.  It sports a 7-DOF arm with gripper, a telescoping 

torso joint, laser scanner, and a pan-and-tilt head with 3D camera.  The official 

documentation for the UBR-1 for ROS Indigo can be found here: 

 http://unboundedrobotics.github.io/ubr1_preview 

To bring up the UBR-1 in Gazebo using an empty world, terminate any running 

simulations, then run the command: 

$ roslaunch ubr1_gazebo simulation.launch  
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If you get this far, we are ready to test some arm navigation. 

 12.10.1  UBR-1 joint trajectories 

To test the basic functionality of the robot's arm and head joints, we can use a slightly 

modified version of the trajectory_demo.py script we wrote for Pi Robot in 

Chapter 11.  All we need to do is change the name of the arm joints and set the goal 

positions accordingly.  We also include some motion of the torso lift joint which makes 

the UBR1 especially versatile when it comes to reaching objects with its arm and 

gripper.  The modified script can be found in the file ubr1_trajectory_demo.py in 

the rbx2_gazebo/scripts directory.  Try it first with the reset parameter set to 

false: 

$ rosrun rbx2_gazebo ubr1_trajectory_demo.py _reset:=false 

The UBR-1's arm and head should move upward and to the right while the torso joint 

moves upward.  To lower the torso, re-center the head, and return the arm to the tucked 

position, run the same script with the reset parameter set to true: 

$ rosrun rbx2_gazebo ubr1_trajectory_demo.py _reset:=true 

The fact that we can use essentially the same script to control both the ultrasophisticated 

UBR-1 and the Dynamixel-powered Pi Robot once again underscores the power of 

ROS.  Since both robots and their underlying controllers are designed to use the same 
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ROS FollowJointTrajectoryAction interface, our code can be programmed at a 

more abstract level without having to worry about the underlying hardware. 

Now that we know that the basic simulation is working, let's try some arm navigation 

using MoveIt!. 

 12.10.2  The UBR-1 and MoveIt! 

The folks at Unbounded Robotics have published the MoveIt! configuration package for 

the UBR-1 so that we can try some of our earlier arm navigation scripts.  When working 

with Pi Robot, we used RViz to visualize the scene.  This time we will use Gazebo.  

If you don't already have the UBR-1 simulation running, bring it up now: 

$ roslaunch ubr1_gazebo simulation.launch 

Next, fire up the MoveIt! nodes for the UBR-1: 

$ roslaunch ubr1_moveit move_group.launch 

Now let's try an inverse kinematics demo.  The script called ubr1_ik_demo.py 

(located in the rbx2_gazebo/scripts directory) is similar to our earlier 

moveit_ik_demo.py script.  The new script does not refer to the named poses (like 

"resting") that were defined in Pi Robot's MoveIt! configuration since these poses are 

not defined in the UBR-1 MoveIt! config.  Also, the scripts uses the UBR-1's 

arm_with_torso planning group so that the torso joint can be included in the IK 

solution.  The target pose we set for the gripper in the script would be too high for the 

robot to reach if it did not have the telescoping torso so we will see how useful that joint  

can be—and, how easily MoveIt! incorporates the joint into finding a solution. 

To try out the script, run the following command while keeping an eye on the robot in 

Gazebo: 

$ rosrun rbx2_gazebo ubr1_ik_demo.py 

You should see the arm and torso move upward and while the gripper assumes a 

horizontal pose pointing forward. 

To tuck the arm back into its resting position, use the UBR-1 tuck_arm.py script 

included in the ubr1_grasping package: 
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$ rosrun ubr1_grasping tuck_arm.py 

Next let's try a Cartesian path using the script ubr1_cartesian_demo.py. 

$ rosrun rbx2_gazebo ubr1_cartesian_demo.py _cartesian:=true 

The arm should first move along a non-Cartesian path to a starting configuration 

defined in the script.  The next trajectory should move the gripper along a Cartesian 

triangle ending up back at the starting position. 

Finally, let's try a pick-and-place demo.  This demonstration is provided by the folks at 

Unbounded Robotics and uses simulated perception through the 3D head camera to pick 

a small cube off a tabletop and place it back down at a new location.  (If you want to dig  

into the code to see how they did the perception part, take a look at the C++ files in the  

ubr1_grasping/src directory.  For example, the file shape_extraction.cpp 

computes the shape of the cube sitting on the table using the Point Cloud Library). 

Before getting started, terminate the current Gazebo session by selecting Quit from the 

File menu, then typing Ctrl-C in the terminal used to launch the simulation.  Next, 

type Ctrl-C in the terminal used to run the move_group.launch file. 

Now begin a new simulation using the simulation_grasping.launch file: 

$ roslaunch ubr1_gazebo simulation_grasping.launch 

This time you should see the UBR-1 together with a table and a cube on the table as 

shown below: 
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Next, bring up the MoveIt! nodes using the grasping.launch file which will also fire 

up the perception code that enables the simulated 3D camera to visually locate the cube 

on the table's surface: 

$ roslaunch ubr1_grasping grasping.launch 

Finally, run the pick-and-place demo: 

$ rosrun ubr1_grasping pick_and_place.py --once  

If all goes well, the UBR-1 should pick up the cube with its gripper and place it back on 

the table to the right of the robot.  Note that the operation is not guaranteed to succeed 

but typically it will get it on the first try. 

 12.11  Real Pick-and-Place using the UBR-1 Perception Pipeline 

The one aspect of real pick-and-place that we haven't yet covered is segmenting the 

visual scene so that the robot knows what to grasp and how to position and orient its 

gripper relative to the target object.  A typical approach is to use the Point Cloud Library 

(PCL) as is done in Michael Ferguson's chessbox package for controlling a chess 

playing robot, as well as the UBR-1 grasping package.  Both packages use the C++ API 

for PCL but one could also try the Python-PCL bindings. 

Although the programming details of the perception process are outside the scope of 

this volume, the basic procedure is as follows: 

• fit a plane to the depth camera's point cloud to detect the support surface 

(usually a table top) 

• remove the points from the cloud that belong to that surface (called "inliers") 

so that the remaining points must correspond to objects sitting on the surface 

• group the remaining points into clusters based on the Euclidean distance 

between points 

• fit either boxes or cylinders to the clusters and compute their poses 

• once we have the pose of a target object, compute a set of suitable grasp poses 

for the gripper like we did earlier with the virtual pick-and-place demo 

Note that this technique does not use the RGB image from the camera at all so in theory, 

the method would even work in the dark. 
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Although we will use the UBR-1 perception code for our demonstration, another useful 

resource is the handle_detector package that uses 3D point cloud data to locate 

grasping locations on different shaped objects.  There is also the 

moveit_simple_grasps package for generating gripper poses for grasping different 

primitive shapes such as boxes and cylinders and the GraspIt! package that handles a 

greater variety of shapes.  For object recognition, one can try the object 

recognition kitchen based on ecto. 

An alternative to PCL-based object detection or recognition is to use the AR tags we 

learned about in Chapter 10.  In this approach, one or more AR tags are placed on the 

object to be grasped, then the ar_track_alvar package can be used to return the pose 

of the target.  This pose could then be used more-or-less directly in our earlier 

moveit_pick_and_place_demo.py script as the starting point to generate possible 

grasp poses for the gripper. 

 12.11.1  Limitations of depth cameras 

When using a Kinect or Xtion Pro for a depth camera for real pick and place tasks, keep 

in mind that the target needs to be at least 0.5 meters away from the camera since both 

cameras cannot measure depth inside this distance.  In the meantime, the length of the 

arm and its position relative to the camera has to enable it to reach outside that 0.5 

meter window where objects will be detected.  Placing the camera at least a couple of 

feet above the arm's shoulder joint tends to work well to address both concerns. 

 12.11.2  Running the demo 

The perception pipeline included in the ubr1_grasping package can be run as a 

standalone ROS action server to detect regularly shaped objects like boxes and 

cylinders sitting on a flat surface such as a table top.  The grasping perception action 

server returns the poses and shapes of any detected objects thereby enabling us to use 

the results for a pick-and-place task with our own robot.  Of course, our robot will need 

to have an arm and gripper as well as a depth camera. 

To see how it works, you'll need a target object such as a small box or cylinder sitting on 

a table top within reach of your robot's arm and gripper.  A travel-sized toothpaste box 

or pill bottle works well for small grippers.  A soda can be used if your robot's gripper 

opens wide enough. 

First terminate any running Gazebo simulations as well as any UBR-1 specific nodes or 

MoveIt! launch files. 
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To begin, launch the startup file for your robot.  In the author's case, a slightly modified 

version of Pi Robot was used with the arm lowered by about 0.3 meters on the torso.  

This enables Pi's relatively short arm to reach target objects placed on a low table 

situated outside the 0.5 meter minimum range of the Kinect.  The relevant launch file 

for this robot model is: 

$ roslaunch rbx2_bringup grasping_pi_robot_no_base.launch sim:=false 

If your robot is uses Dynamixel servos and the ArbotiX ROS driver like Pi Robot, you 

might want to keep the servos from overheating by running the 

monitor_dynamixels.py node we created in the chapter on ROS Diagnostics: 

$ roslaunch rbx2_diagnostics monitor_dynamixels.launch 

Next, bring up the OpenNI node for your depth camera: 

$ roslaunch rbx2_vision openni_node.launch 

Recall that this launch file sets the image and depth resolutions to 320x240 (QVGA) 

which seems to be good enough for detecting even relatively small target objects yet 

keeps the load on the CPU fairly low.  If you feel you need a higher resolution, you can 

use rqt_reconfigure after running the launch file to switch to VGA. 

Fire up an image_view node so you can see what the camera sees: 

$ rosrun image_view image_view image:=/camera/rgb/image_color 

Make sure the camera is at least a couple of feet or so above the table and angle it 

downward so that it is looking at the target object.  The author used a small toothpaste 

box as the target object and the view through the camera looked like the image below 

on the right along with a side shot of the setup on the left: 
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Next, if you haven't done so already, disable MoveIt!'s octomap processing as we 

described at the end of section 11.27.  Generating and displaying the occupancy map 

from the camera's depth cloud consumes a fair bit of CPU power and since we don't 

need it for this test, we'll get better performance by turning it off.   

Now bring up the MoveIt! nodes for your robot.  For Pi Robot we would run: 

$ roslaunch grasping_pi_robot_moveit_config move_group.launch 

Next, fire up RViz with the real_pick_and_place.rviz config file: 

$ rosrun rviz rviz -d `rospack find 
rbx2_arm_nav`/config/real_pick_and_place.rviz 

To run the standalone UBR-1 perception pipeline, use the ubr1_perception.launch 

file in the rbx2_gazebo package: 

$ roslaunch rbx2_gazebo ubr1_perception.launch 
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You should see output messages similar to: 

process[basic_grasping_perception-1]: started with pid [440] [ INFO] 
[1405723663.137069807]: basic_grasping_perception initialized  

The ubr1_perception.launch file is nearly the same as the grasping.launch file 

in the ubr1_grasping package but includes a remapping of the /head_camera topic 

used by the UBR-1 to the /camera topic used by the openni_node.launch file. 

The UBR-1 perception pipeline creates a ROS action server in the namespace 

basic_grasping_perception/find_objects that can be called to trigger a 

segmentation of the visual scene into a support surface (or surfaces) and the target 

object (or objects).  The result is a set of object primitives (boxes and cylinders) and 

their poses that can be inserted into the MoveIt! planning scene.  We can then use these 

poses to guide the robot's arm to grasp and move the target while avoiding collisions 

with the table top or other objects.  Additional details will given after we run the demo. 

We are now ready to run our real pick-and-place script called  

real_pick_and_place.py found in the rbx2_arm_nav/scripts directory.  This 

script begins by calling the UBR-1 perception action server to get the shapes and poses 

of the table top and supported objects.  It then uses these poses with code from our 

earlier moveit_pick_and_place_demo.py script to generate appropriate grasp 

poses, then execute the pick() and place() operations.  (The place pose used for the 

demonstration was chosen so that the robot would move the object to a location just to 

the left of the torso and at the same distance in front of the robot as the original target 

location.) 

To test the perception pipeline but without trying to move the arm, run the script with 

the --objects argument.   

$ rosrun rbx2_arm_nav real_pick_and_place.py --objects 

Initially, you might see a number of messages like the following in the terminal 

window: 

[INFO] [WallTime: 1405913685.062874] Found 0 objects  

Simply adjust the tilt angle of the camera either up or down until ideally only one object 

is detected: 

[INFO] [WallTime: 1405913640.773310] Found 1 object 
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Back in RViz, the view should look something like the following: 

 

Here we see that the UBR-1 perception pipeline has successfully identified the table 

(shown in transparent gray) and the shape and location of the box sitting on top (shown 

in orange).  Note that the box might sometimes appear as a cylinder rather than 

rectangular (and vice versa for cylindrical targets) since the fitting process is not 

perfect. For the most part, this will not affect grasping as long as the width of the virtual 

object is roughly the same in both cases. 

Assuming your target object can be detected, Ctrl-C out of the 

real_pick_and_place.py script, make sure your robot is ready for the real test, and 

run the script again with the --once argument.  This will attempt to execute one 

pickand-place cycle to grasp and move the object and then exit: 

$ rosrun rbx2_arm_nav real_pick_and_place.py --once 

If everything goes well, the robot should begin by lifting its arm around the end of the 

table taking care not touch the table with any part of the arm.  The robot will then reach 

toward the target object and open its gripper in preparation for grasping.  Once the 

gripper is moved into position around the target, the fingers should close so as to grasp 

the object.  This completes the pick() operation.  The script then executes the 
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place() function which attempts to find an IK solution that will move the grasped 

object to the place pose defined in the script.  If successful, the arm will move the object 

to the new location, lower it to the table and open the gripper to release it.  The arm will 

then pull back and up to retreat from the object without knocking it over before 

returning to the resting position, once again avoiding any contact with the table along its 

trajectory. 

Here is a video of Pi Robot executing a successful pick and place: 

 

It is important to note that once the pick operation begins, there is no further visual 

feedback to guide the arm toward the target.  In other words, once the table and target 

object are located by the perception pipeline, the arm begins to move along a 

preplanned trajectory all the way to the target.   This means that the gripper will 

sometimes bump the target or fail to grasp it altogether.  Similarly, the place operation 

assumes that the table is in the same position as it was originally detected.  If we were 

to remove the table part way through the arm movement, the robot would simply drop 

the object on the floor at the place location.  Finally, both the pick and place operations 

can fail due to a failure by the IK solver to find a solution.  Creating an IKFast solver 

for your robot's arm can usually improve the reliability of finding solutions. 

 12.11.3  Understanding the real_pick_and_place.py script 

As we have seen, executing pick-and-place using a real robot is very similar to running 

the same process with virtual objects.  The main difference is that now we have to 
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segment a real visual scene into a support surface and the object we want the robot to 

grasp.  Fortunately, we were able to use the UBR-1 perception pipeline to do the visual 

processing for us.  Once we have the poses of the relevant objects in the scene, we can 

run essentially the same code we used in the previous chapter where we did fake 

pickand-place using the ArbotiX simulator. 

The real_pick_and_place.py script combines the output from the UBR-1 

perception pipeline with our earlier pick-and-place code found in the 

moveit_pick_and_place_demo.py script.  Since we have already examined that 

script in detail, we will focus on the lines that involve getting the object information 

from the UBR-1 perception node. 

Link to source:  real_pick_and_place.py 

 import actionlib 
 from moveit_python import PlanningSceneInterface  
from grasping_msgs.msg import * 

Near the top of the real_pick_and_place.py script we import a few additional 

libraries and messages that we to need work with the UBR-1 node.  The actionlib 

library is needed so we can connect to the UBR-1  basic_grasping_perception 

action server to get the object poses.  From the moveit_python library created by 

Michael Ferguson we need the PlanningSceneInterface that includes Python 

wrappers for a number of MoveIt! utilities for adding and removing scene objects.  The 

grasping_msgs package is used with the perception action server to trigger a visual 

segmentation and get back the results as we'll see next. 

 find_objects =  
actionlib.SimpleActionClient("basic_grasping_perception/find_objects", 

FindGraspableObjectsAction) 

Here we assign a SimpleActionClient to the variable find_objects that connects 

to the UBR-1 basic_grasping_perception/find_objects action server and 

uses  

the message type FindGraspableObjectsAction found in the grasping_msgs 

package.  We will use this action client to trigger a segmentation of the visual image 

which will return the poses of the table and target object. 



 

 Gazebo: Simulating Worlds and Robots - 441 

 goal = FindGraspableObjectsGoal() 

             
 # We don't use the UBR-1 grasp planner as it does not work with our gripper  
goal.plan_grasps = False 
             
 # Send the goal request to the find_objects action server which will trigger 
 # the perception pipeline  
find_objects.send_goal(goal) 
             
 # Wait for a result 
 find_objects.wait_for_result(rospy.Duration(5.0)) 

             
 # The result will contain support surface(s) and objects(s) if any are detected 
 find_result = find_objects.get_result() 

To trigger the perception pipeline, we first create an empty goal object using the   

FindGraspableObjectsGoal message type.  Then we turn off the UBR-1's grasp 

planner which is specific to the UBR-1's parallel gripper.  (We will use our own grasp 

generator as we did earlier with fake pick-and-place.)  Next we send the empty goal to 

the action server using our find_objects action client which triggers the visual 

segmentation process on the action server.  We then wait for the results for up to 5 

seconds and store whatever is returned in the variable find_results.  These results 

will be in the form of a FindGraspableObjectsResult message which contains a 

wealth of information about the shape and pose of any detected support surfaces and 

objects.  You can see the full definition of the message by running the command: 

$ rosmsg show grasping_msgs/FindGraspableObjectsResult 

Now that we have the perception results we can get the poses of the support surface and 

target object. 
 for obj in find_result.objects:      
count += 1 
     scene.addSolidPrimitive("object%d"%count,                              
obj.object.primitives[0],                              
obj.object.primitive_poses[0], 
                             wait = False) 

This loop cycles through all detected objects in the results and adds their shapes and 

poses to the MoveIt! planning scene. 
    # Choose the object nearest to the robot 
    dx = obj.object.primitive_poses[0].position.x - args.x 
    dy = 
obj.object.primitive_poses[0].position.y     d = 
math.sqrt((dx * dx) + (dy * dy))     if d < 
the_object_dist:         the_object_dist = d         
the_object = count 
     
        # Get the size of the target 
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        target_size = obj.object.primitives[0].dimensions 

     
        # Set the target pose         target_pose.pose = 
obj.object.primitive_poses[0] 

As we loop through the objects, we keep track of the one that is closest to the robot.  

This will become our target.  We get the size of the target from the dimensions of the 

object's primitive (e.g. box, cylinder, etc.) and the pose from the object's 

primitive_poses array. 

       target_pose.pose.orientation.x = 0.0        
target_pose.pose.orientation.y = 0.0        
target_pose.pose.orientation.z = 0.0        
target_pose.pose.orientation.w = 1.0 

Since we generally want the arm to approach the target with the gripper oriented 

horizontally, we set the target pose accordingly.  Note however that you could also try 

using the object's pose directly for the target pose. 

A similar loop in the script (which we won't repeat here) cycles through any detected 

support surfaces and inserts them into the planning scene as we did for objects.  In our 

simple setup there is only one support surface so we can assume it is the table top in 

front of the robot. 

 place_pose = PoseStamped() 
 place_pose.header.frame_id = REFERENCE_FRAME  place_pose.pose.position.x = 
target_pose.pose.position.x 
 place_pose.pose.position.y = 0.03 
 place_pose.pose.position.z = table_size[2] + target_size[2] / 2.0 + 0.015  
place_pose.pose.orientation.w = 1.0 

Here we define the place_pose which is the position and orientation we want the 

object to be moved to after it is grasped.  In this case we want the object to end up the 

same distance in front of the robot (position.x), then 3 cm to the left of the torso 

(position.y) and on the table surface (position.z) which we compute from the 

table height, half the target height and a calibration factor of 0.015 meters upward just 

to be sure we do not try to embed the object inside the table. 
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 # Initialize the grasp pose to the target pose 
 grasp_pose = target_pose 

              
 # Shift the grasp pose half the size of the target to center it in the 
gripper  try:      grasp_pose.pose.position.x += target_size[0] / 2.0      
grasp_pose.pose.position.y -= 0.01 
     grasp_pose.pose.position.z += target_size[2] / 2.0  

except: 

     rospy.loginfo("Invalid object size so 
skipping")      continue 

 # Generate a list of grasps  grasps = 
self.make_grasps(grasp_pose, [target_id]) 

The last step before starting the pick operation is to set the initial grasp pose and 

generate a collection of alternative grasps to try with the pick planner.  Here we 

initialize the grasp pose to the target pose.  We then shift the pose by half the target size 

in the x and z dimensions to better center the grasp on the object.  The lateral shift in 

the y dimension of -1.0 cm was determined empirically to center the object between 

the gripper fingers. 

The rest of the script is essentially the same as the  

moveit_pick_and_place_demo.py script that we discussed in detail in section 

11.26. 

 12.12  Running Gazebo Headless + RViz 

Gazebo can be run in headless mode which means it does not run the graphics engine or 

bring up the GUI.  The robot can still be viewed in RViz however.  This can be useful if 

you want to use Gazebo's physics engine but the display capabilities of RViz. 

The easiest way to run a robot's Gazebo simulation in headless mode is for the launch 

file to be configured to accept a "headless" argument that is passed through to the 

gzserver process.   While the Kobuki launch file we used earlier does not include this 

argument, the UBR-1 launch files do.  In particular, let's take a look at the UBR-1 

simulation.launch file we ran earlier: 

Link to source: simulation.launch 

1 <launch>  
2 
3 <!-- roslaunch arguments -->  
4 <arg name="debug" default="false"/>  
5 <arg name="gui" default="true"/>  
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6 
7 <!-- We resume the logic in empty_world.launch, changing only the name of 

the  
8 world to be launched -->  
9 <include file="$(find gazebo_ros)/launch/empty_world.launch">  
10 <arg name="debug" value="$(arg debug)" />  
11 <arg name="gui" value="$(arg gui)" />  
12 <arg name="paused" value="false"/>  
13 <arg name="use_sim_time" value="true"/>  
14 <arg name="headless" value="false"/>  
15 </include>  
16 
17 <!-- Add the robot, set head forward -->  
18 <include file="$(find ubr1_gazebo)/launch/include/simulation.ubr1.xml" /> 19  

<node name="prepare_head" pkg="ubr_teleop" type="set_head_pose.py" args="0 
0"/  

20 >  
21 
22 </launch>  

Note that Line 9 above includes the standard empty_world.launch file from the 

gazebo_ros package.  Lines 10-14 pass a number of arguments to that launch file; in 

particular, a value of false is set for the headless parameter and a value of true is 

set for the gui parameter.  Taken together, these cause the empty_world.launch file 

to run the gzserver process in headless mode and without the gzclient GUI. 

To try it out, terminate any running Gazebo simulations and launch the UBR-1 grasping 

simulation in headless mode as follows: 

$ roslaunch ubr1_gazebo simulation_grasping.launch headless:=true 
gui:=false 

You should see various startup messages related to the UBR-1 controllers, but the 

Gazebo GUI will not appear. 

Wait for the simulation launch file to finish coming up, then open another terminal and 

run the ubr1_grasping launch file which runs the UBR-1 MoveIt! nodes as well as 

the perception pipeline: 

$ roslaunch ubr1_grasping grasping.launch 

Now  fire up RViz with the ubr1.rviz config file found in the 

rbx2_gazebo/config directory: 

$ rosrun rviz rviz -d `rospack find rbx2_gazebo`/config/ubr1.rviz 
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After a few seconds delay, you should see the model of the UBR-1 in RViz.  Note that 

we do not yet see the table and cube as we did in the Gazebo GUI.  This is because 

those objects are being represented in the simulation in a manner that cannot be 

displayed directly in RViz.  They will become visible shortly. 

Finally, run the UBR-1 pick-and-place demo and keep an eye on RViz: 

$ rosrun ubr1_grasping pick_and_place.py --once 

The first part of the pick and place script makes a call to the UBR-1's PCL-based 

perception pipeline that can detect planar surfaces and any objects on top of them.  

Although we do not see the table and cube initially in RViz, they are being simulated in 

Gazebo as is the UBR-1's depth camera. 

Once the table and cube are detected, they are published as primitive shapes on the  

/move_group/monitored_planning_scene topic to which we are subscribing in 

RViz under Planning Scene in the Motion Planning display.  You will therefore see 

the table and cube suddenly appear after which the UBR-1 should perform the pick-

andplace operation as we saw earlier in Gazebo. 

NOTE: You will probably notice that the movement of the grasped cube seems to lag 

the movement of the gripper.  This is an artifact of some as yet unidentified bug in the 

MoveIt! RViz plugin.  You can see smooth motion of the cube at the expense of jerky 

movement of the arm by changing the following settings in RViz: 

• under Scene Robot, change the Alpha value from 0 to 1 

• un-check the RobotModel display 

Now run the pick-and-place demo again.  This time the arm motion will not be as 

smooth but the grasped object will move in sync with the gripper. 
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13. ROSBRIDGE: BUILDING A WEB GUI FOR 

YOUR ROBOT 

In a world of touch screens and point-and-click interfaces, running ROS nodes and 

launch files from the command line using multiple terminal windows might seem a little 

tedious.  There are a number of ways to build a GUI for your robot so that it can be 

operated and monitored using a more intuitive interface.  Some of these approaches 

require graphical toolkits such as wxWidgets or Qt and run natively under the OS you 

are using.  For example, RViz is built on the Qt framework.  However, there is no 

guarantee that a GUI built on these toolkits will run on your particular device or OS. 

An alternative approach is based on web sockets, HTML and Javascript and will run on 

almost any device with a web browser.  The key ingredient is rosbridge_suite, a set 

of ROS packages created at Brown University for interacting with ROS topics and 

services using the JSON protocol over websockets. 

Using rosbridge will enable us to monitor and control our robot using nothing more 

than a web browser on just about any OS and platform, including tablets and smart 

phones.  Furthermore, although we will use JavaScript for our examples, you can 

develop your client GUI using nearly any language that supports websockets such as 

Python, Java, Android, C# / .NET and C++ / Boost. 

 13.1  Installing the rosbridge Packages 

To install rosbridge_suite and supporting packages, run the following commands: 

$ sudo apt-get update 
$ sudo apt-get install ros-indigo-rosbridge-suite \ ros-indigo-
robot-pose-publisher ros-indigo-tf2-web-republisher $ rospack 
profile 

We will also need a number of JavaScript packages that are not typically distributed as 

Debian packages.  These packages are already included in the rbx2_gui/js directory 

but if you need to reinstall them for some reason, you can run the install-

jspackages.sh script as follows: 

 

The script downloads the following Javascript packages: 

http://cdn.robotwebtools.org/roslibjs/r5/roslib.min.js 
http://cdn.robotwebtools.org/mjpegcanvasjs/current/mjpegcanvas.min.js 
http://cdn.robotwebtools.org/EventEmitter2/0.4.11/eventemitter2.min.js 

$ roscd rbx2_gui/scripts 
$ sh install-js-packages.sh 
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http://cdn.robotwebtools.org/EaselJS/0.6.0/easeljs.min.js 
http://cdn.robotwebtools.org/ros2djs/r2/ros2d.min.js 
http://cdn.robotwebtools.org/ros3djs/current/ros3d.min.js 
http://threejs.org/build/three.min.js http://code.jquery.com/jquery-
1.10.2.min.js http://d3lp1msu2r81bx.cloudfront.net/kjs/js/lib/kinetic-
v5.0.1.min.js 

Note that one additional Javascript package found at  

http://cdn.robotwebtools.org/nav2djs/current/nav2d.js had to be  

tweaked to fix an offset bug when using a map for navigation.  The version included in 

rbx2_gui/js has been adjusted to work with the test map found at 

rbx2_nav/maps/test_map.yaml. 

 13.2  Installing the mjpeg_sever Package 

We will use the mjpeg_server package to stream live video from ROS topics over 

HTTP to our browser GUI.  Install it now with the following command: 

$ sudo apt-get install ros-indigo-mjpeg-server 

To test the server, first connect to a camera.   For a Kinect or Asus Xtion Pro fire up the 

OpenNI node: 

$ roslaunch rbx2_vision openni_node.launch 

If you are using a webcam, and assuming you have the uvc_cam driver installed from 

Volume 1, you can use: 

$ roslaunch rbx2_vision uvc_cam.launch 

Now open another terminal and run the mjpeg_server node: 

$ rosrun mjpeg_server mjpeg_server 

You should see the following startup messages: 

[ INFO] [1382792594.998250777]: Starting mjpeg server  
[ INFO] [1382792594.998890964]: Bind(8080) succeeded  
[ INFO] [1382792594.999053552]: waiting for clients to connect 

Note that mjpeg_server uses port 8080 by default.  If you are already using that port 

for something else, you can run mjpeg_server with a different port parameter.  The 

following example uses port 8181: 

$ rosrun mjpeg_server mjpeg_server _port:=8181 
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NOTE:  When you run mjpeg_server with a different port as shown above, the port 

number is stored on the ROS parameter server.  So if you run mjpeg_server in a later 

session without the port parameter, it will pick up the port number from the parameter 

server instead of the default port 8080.  To override the value on the parameter server, 

you can specify the default port on the command line just as we did above with the 

alternate port.  You can also use the included mjpeg_server launch file which sets the 

port parameter to the default 8080: 

$ roslaunch rbx2_gui mjpeg_server.launch  

If you need to run mjpeg_server on a different port, you can edit this file or make a 

copy of it and set the port accordingly. 

With both the camera node and mjpeg_server running, you should now be able to 

view the camera image at the following URL: 

http://localhost:PORT/stream?topic=/IMAGE_TOPIC 

where PORT is the port we are running mjpeg_server on and IMAGE_TOPIC is the 

camera image topic we want to view.  Using the default port 8080 and the image topic  

/camera/rgb/image_color used by both the openni_node.launch file and the 

uvc_cam.launch file,  we would use the URL: 

http://localhost:8080/stream?topic=/camera/rgb/image_color 

IMPORTANT NOTE: Until recently, it used to be possible to enter this URL directly 

into your browser to view the streaming video.  However, recent changes to web 

browser standards require that mjpeg streams now be embedded in a standard web page.  

For example, if you enter the above URL into the latest version of Google Chrome 

under Ubuntu 12.04 you will simply get a blank page.  The workaround is to create a 

minimal web page with an <img> tag pointing to the desired URL.  For example, the 

following web page will work with the URL above: 

<html> 
   <head> 
      <meta content="text/html; charset=ISO-8859-1" http-equiv="content-type"> 
      <title>mjpeg_server</title> 
   </head> 
   <body> 
      <img src="http://localhost:8080/stream?topic=/camera/rgb/image_color"> 
  </body> 
</html> 

This example can be found in the rbx2_gui directory and is called 

mjpeg_server.html.  Open this file in your web browser (click on the File menu,  

select Open File, then navigate to the file in your rbx2_gui directory) and you should 

see the streaming video. 
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Assuming you can see the live streaming image you can even change the image 

resolution on the fly using rqt_reconfigure: 

$ rosrun rqt_reconfigure rqt_reconfigure 

Select the camera driver in the reconfigure window and change the image mode from 

QVGA_30Hz (5) to VGA_30Hz (2).  Looking back at your web browser, your should 

see the image immediately change size from 320x240 pixels to 640x480. 

If you are connected to a Kinect or Xtion Pro using the openn_node.launch file, you 

can view a grayscale image by using  the URL: 

http://localhost:8080/stream?topic=/camera/rgb/image_mono 

in your HTML file. 

Even though there is a depth image published on the topic  

/camera/depth/image_rect which is viewable in image_view, it will not display 

using mjpeg_server at the time of this writing.  An enhancement request has been 

submitted on the mjpeg_server GitHub page. 

Finally, there are four other parameters we can use to modify the appearance of the 

streaming image: 

• width (integer, default: original width) The image stream will be resized to a 

new width and height. This parameter has to be used in conjunction with the 

height parameter. 

• height (integer, default: original height) The image stream will be resized to a 

new width and height. This parameter has to be used in conjunction with the 

height parameter. 

• quality (integer, default: 90)  The jpeg image quality (1-100). This 

parameter can be used to reduce the size of the resulting mjpeg stream. 

• invert (none, default: ) Rotates the image by 180 degrees before streaming 

So to view the color image at a size of 1280x960 (regardless of the original resolution) 

and a jpeg quality of 50, use the URL: 

http://localhost:8080/stream?topic=/camera/rgb/image_color? 

width=1280?height=960?quality=50 

Using a lower quality setting can be useful for reducing the bandwidth needed for the 

video stream. 

 13.3  Installing a Simple Web Server (mini-httpd) 
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While mjpeg_server provides its own HTTP server for viewing images, rosbridge 

requires a separate web server for processing websocket requests. 

Since not everyone runs a web server like Apache on their robot's computer, we will use 

a simple web server called mini-httpd to serve up our robot GUI.  Run the following 

command to install the mini-httpd  package: 

$ sudo apt-get install mini-httpd  

At the end of the installation, you will see the message: 

You have to edit /etc/mini-httpd.conf and /etc/default/mini-
httpd before running mini-httpd! 

Ignore this for now as we will use our own configuration file located in the rbx2_gui 

directory. 

Included in the rbx2_gui/scripts directory is a simple shell script called 

minihttpd.sh that will launch the webserver on port 8181 and set the document 

directory to the rbx2_gui directory.  Run the script now as follows: 

$ rosrun rbx2_gui mini-httpd.sh 

You will likely see the message: bind: 

Address already in use which can 

be ignored as there seems to be a bug 

in mini-httpd that causes this 

message to be displayed even when the 

port is free.   If the port really is in use 

by another process, change the port in 

the mini-httpd.conf file to 

something else, like 8282 and try 

running it again.  (But don't use ports 
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8080 or 9090 as these will be used by 

other processes needed by 

rosbridge.)  Remember the port 

number you end up using as we will 

need it below. 

 13.4  Starting mini-httpd, rosbridge and mjpeg_server 

The launch file rosbridge.launch in the rbx2_gui/launch directory can be used 

to fire up the mini-httpd webserver, rosbridge websocket server and 

mjpeg_server.  Let's take a look at it now: 
<launch> 

  <rosparam ns="/robot_gui">      
maxLinearSpeed: 0.5      
maxAngularSpeed: 2.0 
     videoTopic: /camera/rgb/image_color   </rosparam>   <node 

name="mini_httpd" pkg="rbx2_gui" type="mini-httpd.sh" output="screen" /> 

  <node name="mjpeg_server" pkg="mjpeg_server" type="mjpeg_server" 
output="screen" /> 

  <node name="robot_pose_publisher" pkg="robot_pose_publisher" 
type="robot_pose_publisher" output="screen" /> 
   
  <include file="$(find rosbridge_server)/launch/rosbridge_websocket.launch" /> 

   
  <include file="$(find rbx2_bringup)/launch/laptop_battery.launch" /> 

</launch> 

First we set a few parameters under the namespace /robot_gui.  These will be used 

later on in our Javascript files.  Next we launch the mini-httpd server, followed by 

the mjpeg_server node and a robot_pose_publisher node which is only required 

if your rosbridge application using 2D navigation.  We then launch the laptop battery 

node in case we are on a laptop and want to monitor its battery level.  Finally, we run 

the rosbridge websocket server. 

Before running the launch file, terminate any mjpeg_server node you might still have 

irunning from an earlier session.  Then run the command: 

$ roslaunch rbx2_gui rosbridge.launch 
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The output on your screen should look something like this: 

process[mini_httpd-1]: started with pid [7605] process[mjpeg_server-2]: 
started with pid [7608] process[robot_pose_publisher-3]: started with 
pid [7619]  
[ INFO] [1405216068.487706174]: Starting mjpeg server  
[ INFO] [1405216068.487971928]: Bind(8080) succeeded  
[ INFO] [1405216068.488020494]: waiting for clients to connect 
process[rosbridge_websocket-4]: started with pid [7641]  
process[rosapi-5]: started with pid [7648] registered 
capabilities (classes):  
- rosbridge_library.capabilities.call_service.CallService  
- rosbridge_library.capabilities.advertise.Advertise  
- rosbridge_library.capabilities.publish.Publish  
- rosbridge_library.capabilities.subscribe.Subscribe  
- <class 'rosbridge_library.capabilities.defragmentation.Defragment'>  
- rosbridge_library.capabilities.advertise_service.AdvertiseService  
- rosbridge_library.capabilities.service_response.ServiceResponse  
- rosbridge_library.capabilities.stop_service.StopService  
Launching mini-httpd... process[laptop_battery-6]: 
started with pid [7654]  
[INFO] [WallTime: 1405216069.059353] Rosbridge WebSocket server started  
on port 9090 [mini_httpd-1] process has 
finished cleanly  

If you are on a desktop, you will see a couple of harmless warnings that the battery 

cannot be detected by the laptop battery node. 

We are now ready to bring up our test robot GUI. 

 13.5  A Simple rosbridge HTML/Javascript GUI 

The rbx2_gui package includes a simple HTML/Javascript GUI defined by the file 

rbx2_gui/simple_gui.html.  To test the GUI on your machine, you will need an 

HTML5-compatible browser such as Google Chrome. 

First make sure you have your video driver running.  For a Kinect or Xtion Pro you can 

use: 

$ roslaunch rbx2_vision openni_node.launch 

For a webcam, use: 

$ roslaunch rbx2_vision uvc_cam.launch 

Next, if you haven't already run the rosbridge.launch file, bring it up now: 

$ roslaunch rbx2_gui rosbridge.launch 
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Now point your browser to the following URL: 

http://localhost:8181/simple_gui.html 

(Change the port number if you were not able to use port 8181 for the mini-httpd 

webserver.) 

NOTE: With recent changes to both web browser standards and the rosbridge  

JavaScript code base, the author has experienced the best results by using Google 

Chrome on both Ubuntu 12.04 and an Android 4.0 tablet.  On the other hand, results 

have been inconsistent using Firefox on Ubuntu 12.04, especially when it comes to 

video streaming. 

If everything goes well, your web browser should look something like the following: 

 

If you don't see the video stream after a few seconds, try reloading the web page. 

As we saw earlier, the rosbridge.launch file sets the video topic to 

/camera/rgb/image_color which is the default topic when using either the 

openni_node.launch file or the uvc_cam.launch file.  If your camera is 

publishing the video stream on a different topic, change the videoTopic parameter in 

rosbridge.launch and restart the launch file. 

Next, let's focus on the areas above and below the video display.  The row along the top 

includes a text box for the rosbridge host and port that have been given default values 

of localhost and 9090.  The checkbox is initially checked and causes the GUI to 

connect to the rosbridge server when it is first loaded.  Try un-checking the box and the 

video stream should either disappear or freeze.  Check the box again and the video 

should become live again.  If the video doesn't reappear for some reason, simply reload 
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the page.  We'll see how to map HTML controls into actions when we look at the 

underlying Javascript. 

Now take a look at the area below the video display.  Notice that the Publish and 

Subscribe check boxes are currently un-checked.  Open a terminal window and issue 

the command: 

 

You will probably see the following message: 

WARNING: topic [/chatter] does not appear to be published yet  

Keeping the terminal window visible, return to your web browser and check the 

Publish checkbox.  You should see a series of messages in the terminal like the 

following: 

data: Greetings 
Humans! --- data: 
Greetings Humans! --- 
data: Greetings 
Humans! ---  

So checking the Publish checkbox results in publishing the message entered in the 

Message text box beside it.  Now check the Subscribe checkbox.  You should see the 

message "Greetings Humans!" appear in the Message text box to the right.  Keeping 

both check boxes checked, enter some new text in the Publish text box.  As you type, 

the message in the Subscribe Message box should mirror the new message.  Returning 

to your terminal window, you should also see the new message displayed there as well. 

You can test the parameter buttons and text boxes in a similar fashion.  Entering a name 

and value for a parameter and clicking the Set button will store that parameter value on 

the ROS parameter server.  Entering a parameter name and clicking the Get button will 

read the parameter value into the corresponding text box. 

We will explore the simple_gui.html file and its associated Javascript below.  But 

first let's try out the navigation controls using the fake TurtleBot. 

 13.6  Testing the GUI with a Fake TurtleBot 

Before using the simple GUI to control a real robot, it is a good idea to test the 

navigation controls in simulation.  First bring up the fake TurtleBot from the 

rbx2_tasks package: 

$ roslaunch rbx2_tasks fake_turtlebot.launch 

Next, bring up RViz with an appropriate configuration file: 

$ rosrun rviz rviz -d `rospack find rbx2_nav`/config/sim.rviz 

$ rostopic echo /chatter  
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If you don't already have the rosbridge launch file running, fire it up now as well: 

$ roslaunch rbx2_gui rosbridge.launch 

We won't need a camera for this test but you can leave it running if you already have it 

up. 

Point your browser to http://localhost:8181/simple_gui.html and arrange your windows 

so that both RViz and the browser window are visible at the same time.  You should 

then be able to drive the robot around RViz by holding down the Shift key and 

clicking the large arrow keys on the GUI.  (You can also use the arrows keys on your 

keyboard while holding down the Shift key.)  The Shift key acts as a "dead man's 

switch" so that when you release it, the robot will stop.  With the Shift key held down, 

each click of a given arrow will increment the robot's speed in that direction.  You can 

also use the slider controls beneath the arrows to increase or decrease the maximum 

linear and angular speeds of the robot.  

 13.7  Testing the GUI with a Real Robot 

If you have a real robot that responds to Twist messages published on the /cmd_vel 

topic, then you can use the simple web GUI right away to control your robot.  Simply 

launch your robot's startup files as well as the rosbridge.launch file used in the 

previous section, then use the Shift key and the your mouse to move the robot around 

by clicking on the arrow keys. 

You can also use the slider controls beneath the arrows to increase or decrease the 

maximum linear and angular speeds of the robot.  If you want to change the default max 

speeds, change the appropriate parameter values in the rosbridge.launch file. 

 13.8  Viewing the Web GUI on another Device on your Network 

If you have tablet or other device connected to the same router as the machine running 

rosbridge, then you should be able to open a web browser on that device and point 

it to the following URL: http://a.b.c.d:8181/simple_gui.html 

where a.b.c.d is the IP address of your rosbridge host.  For example, if the 

machine running rosbridge has local IP address 10.0.0.3, then enter the following 

URL on your tablet or other device: 

http://10.0.0.3:8181/simple_gui.html 

(If the two machines are not connected through the same router then you will need to 

configure any firewalls between the two device to allow access on ports 8080, 9090 

and 8181.) 
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If you are using a tablet, then you can use the touch screen to control your robot by 

tapping on the arrow keys, although on some tablets this will magnify the screen as 

well. Since there is no Shift key on the tablet, the "dead man's switch" is implemented 

with a timer so that robot will stop moving if you stop tapping for 1 second.  You will 

probably find the max speed sliders impossible to actually slide using touch; instead, tap 

to the left or right of the slider to make it move.   In short, this simple GUI does not 

work very well with a touch interface so we will look at a more appropriate set of touch 

controls later in the chapter. 

NOTE: If you have the web GUI up in more than one browser at a time, the robot's 

behavior will become erratic.  In particular, it will likely move with a "stop-and-go" 

motion as one browser publishes the velocity commands you control and the other 

browser publishes "stop" commands since there is no mouse or touch input on that 

device.  So if you are using a touch device, be sure to close your desktop web browser 

window and vice versa. 

 13.9  Using the Browser Debug Console 

When developing your own rosbridge GUI, you will find your browser's debugging 

console invaluable for tracking down problems.   If you are using Google Chrome or 

Firefox, hold down the keys CTRL-SHIFT-j together to either show or hide the 

console. With the console open in Google Chrome, your browser window should look 

something like this: 
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The lower panel displays the output of the Console.  You can display messages here in 

your Javascript code using the console.log() command.  In the screen shot above, 

our script displayed the two messages "Rosbridge connected" and "Starting publishers".  

Beside each message is the script name and line number that generated the output.  You 

can click on the line number to go directly to the location in your script. 

The third message above is a warning displayed by the mjpegcanvas script about an 

unexpected MIME type but since it is simply a warning and our video image is working 

fine, we can ignore it. 

Error messages will be displayed in red along with a line number and will generally be 

accompanied by a malfunctioning of your GUI.  Fix the error in your script using your 

favorite editor, then reload the web page to see if the error goes away. 

 13.10  Understanding the Simple GUI 

The simple GUI example is defined by two files in the rbx2_gui package: 

simple_gui.html (in the top level directory) defines the layout of the GUI while 
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simple_gui.js (located in the js subdirectory) handles the rosbridge code and 

any dynamic aspects of the interface. 

 13.10.1  The HTML layout: simple_gui.html 

Let's take a look at the GUI layout as defined by the file simple_gui.html 

Link to source: simple_gui.html 
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML5//EN"  
"http://www.w3.org/TR/html4/strict.dtd"> 
  <html> 
    <head> 
      <meta content="text/html; charset=ISO-8859-1" http-equiv="content-type"> 
      <meta name="viewport" content="width=device-width, height=device-

height, initial-scale=0.65, user-scalable=yes">       <title>Robot 

GUI</title> 

      <script type="text/javascript" src="js/eventemitter2.min.js"></script> 
      <script type="text/javascript" src="js/mjpegcanvas.min.js"></script> 
      <script type="text/javascript" src="js/roslib.min.js"></script> 
      <script type="text/javascript" src="js/simple_gui.js"></script> 

      <script type="text/javascript">          function init() 
{      var readyStateCheckInterval = setInterval(function() 
{                if (document.readyState === "complete") { 

   init(); 
   clearInterval(readyStateCheckInterval); 
} 

            }, 100); 
         } 
      </script> 

We start by importing the various Javascript libraries we need including: 

• eventemitter2.js – a event module required by mjpegcanvas.js 

• mjpegcanvas.js – the Javascript client for connecting to the mjpeg_server 

node 

• roslib.js – the main rosbridge library 

• simple_gui.js – our own Javascript code that will be described below 

We then define an init() function that simply waits for the page to be loaded 

completely before continuing.  This ensures that we won't try to connect to the 

rosbridge and mjpeg servers until the various HTML elements are all in place. 

   <body onload="init();init_ros();"> 
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In the main body tag, we run the init() function described above followed by the  

init_ros() function.  This latter function is defined in our simple_gui.js file and 

takes care of connecting to rosbridge and mjpeg_server as we shall see. 

 <form name="simple_gui" method="get" action="./"> 

 <table width="100%" border="0" cellpadding="2" cellspacing="2"> 
   <tbody> 

   <!-- ===== Left Panel ===== --> 
   <tr> 
     <td> 
       <table style="text-align: left; width: 100%;" border="1" cellpadding="2" 
cellspacing="2">        <tbody> 
       <!-- *** Table Row 1: Connect/Disconnect to the rosbridge Server --> 
         <tr> 
           <td colspan="2"> 
             <div style="white-space: nowrap; vertical-align: middle; textalign: 
middle; margin-left: 10px;"> 
               Server Hostname or IP: <input type="text" id="rosbridgeHost" 
value="">&nbsp;  
               Port: <input type="text" id="rosbridgePort" size="5" 
value="">&nbsp;<  nobr  /> 
               Connect:&nbsp;<input id="connectROS" type="checkbox" 
class="checkbox" checked onClick="connectDisconnect();"> 
             </div> 
           </td> 
         </tr> 

Here we begin the layout of our GUI.  We use a number of nested tables to split the 

screen into four main panels: upper left for the rosbridge connection and video 

image, lower left for a number of publish/subscribe boxes and buttons; upper right for 

the page title and status area; and lower right for the motion controls.  (You'll probably 

find the source easier to read using your own editor or by viewing the code on Github.) 

The first few lines shown above create a row just above the video display containing a 

pair of text boxes for the rosbridge host and port and a checkbox that toggles the 

connection off or on.  The connectDisconnect() function assigned to the checkbox 

is defined in our simple_gui.js file. 

  <!-- *** Table Row 2: Display the video image --> 
  <tr> 
     <td colspan="2" width="100%"><div id="videoCanvas" style="display: 
block;"></div><br/></td> 
  </tr> 

Next we insert a <div> tag named videoCanvas where the mjpegcanvas client will 

display the video image. 

  <!-- *** Table Row 3: Publish a message on the /chatter topic  --> 

  <tr> 
    <td> 
      <table id="pubSubBlock"> 
        <tr> 
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          <td style="vertical-align: top; text-align: right;">Publish: <input 
id="chatterToggle" type="checkbox" class="checkbox" onClick="toggleChatter();">           
</td> 
          <td style="vertical-align: top; text-align: 
left;">&nbsp;Topic:&nbsp;/chatter 
            &nbsp;&nbsp;Message:&nbsp; <input type="text" size="30" 
id="chatterMessage" value="Greetings Humans!"             
onInput="updateChatterMsg(this.value);"> 
          </td> 
        </tr> 

These lines add a checkbox to publish the message entered in the accompanying text 

box on the /chatter topic.  The toggleChatter() function is defined in 

simple_gui.js.  Note how we also assign the function updateChatterMsg() to 

the onInput event handler.  The updateChatterMsg() function is also defined in 

simple_gui.js. 

  <!-- *** Table Row 4:  Subscribe to the message on the /chatter topic  --> 
  <tr> 
    <td style="vertical-align: top; text-align: right;"> 
      Subscribe: <input id="chatterSub" type="checkbox" class="checkbox" 
onClick="subChatter();"> 
    </td> 
    <td style="vertical-align: top; text-align: left;">&nbsp; 
      Topic:&nbsp;/chatter&nbsp;&nbsp; 
      Message:&nbsp; <input readonly="readonly" type="text" size="30"  
id="chatterData"> 
    </td> 
  </tr> 

Here we have a checkbox and read-only text box used to subscribe to the /chatter  

topic and display the current message. 

  <!-- *** Table Row 5:  Set a parameter value  --> 
  <tr> 
    <td style="vertical-align: top; text-align: right;">Set Parameter:</td> 
    <td style="vertical-align: top; text-align: left;">&nbsp;Name:&nbsp; <input 
type="text" 
      id="setParamName" value="test_param">&nbsp;Value:&nbsp; <input type="text"  
id="setParamValue" 
      value="10" size="5"> <input id="setParameter" type="button" value="Set  
Param" 
      onClick="setROSParam();"> 
    </td> 
  </tr> 

  <!-- *** Table Row 6:  Get a parameter value  --> 
  <tr> 
    <td style="vertical-align: top; text-align: right;">Get Parameter:</td> 
    <td style="vertical-align: top; text-align: left;">&nbsp;Name:&nbsp; <input  
type="text" 
      id="getParamName" value="test_param">&nbsp; Value:&nbsp; <input  
type="text" 
      readonly="readonly" id="getParamValue" size="5"> <input id="getParameter"  
type="button" 
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      value="Get Param" onClick="getROSParam();"> 
    </td> 
  </tr> 

In these two blocks, we create buttons and text boxes to set or get a ROS parameter 

from the parameter server. 

  <!-- ===== Right Panel ===== --> 
  <td valign="top"> 
    <h1>ROS Remote Control</h1> 
    <table width="100%" border="0" cellpadding="2" cellspacing="2"> 
    <tbody> 
      <tr valign="top"> 
        <td colspan="3"><label id="cmdVelStatusMessage"></label><br> 
                    <h3><label id="navInstructions"></label></h3> 
        </td> 
       </tr> 
       <tr> 
         <td colspan="3"><img src="images/arrow-up.jpg" id="arrow_up"  
width="100" onTouchEnd="timedStopRobot();" 
              onTouchStart="setSpeed('forward');clearTimedStop();"  
onClick="setSpeed('forward');" alt=""> 
         </td> 
       </tr> 
       <tr> 
         <td width="33%"><img src="images/arrow-left.jpg" width="100" 
onTouchEnd="timedStopRobot();" 
              onTouchStart="setSpeed('left');clearTimedStop();" 
onClick="setSpeed('left');" alt=""> 
         </td> 
         <td width="33%"><img src="images/stop.jpg" width="100"  
onClick="stopRobot('forward');" alt=""></td> 
         <td width="33%"><img src="images/arrow-right.jpg" width="100"  
onTouchEnd="timedStopRobot();" 
              onTouchStart="setSpeed('right');clearTimedStop();"  
onClick="setSpeed('right');" alt=""></td> 
       </tr> 
       <tr> 
         <td colspan="3"><img src="images/arrow-down.jpg" width="100"  
onTouchEnd="timedStopRobot();" 
              onTouchStart="setSpeed('backward');clearTimedStop();"  
onClick="setSpeed('backward');" alt=""> 
         </td> 
       </tr> 

Here we begin the right hand panel where we place four arrow icons for controlling the 

robot's motion.  In the lines above, we first insert two labels for displaying the current 

linear and angular speeds as well as instructions on how to use the navigation arrows. 

Next, we arrange the four navigation arrow icons in a square with a stop icon in the 

middle.  First we place an upward pointing arrow icon stored in the images 

subdirectory and whose onclick() and on onTouchStart() functions are set to 

setSpeed('forward').  The setSpeed() function is defined in simple_gui.js 
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and publishes a cmd_vel message to move the robot.  We also set the onTouchEnd() 

event to call the function timedStopRobot() that will stop the robot if the user's 

finger is lifted for more than one second from the screen when using a touch device.  

The timedStopRobot() function itself is defined in simple_gui.js as we shall see 

later on. 

The next group of lines simply repeat the above pattern with the three other arrow icons 

for moving the robot back, left and right, as well as a stop icon in the middle that will 

stop the robot when clicked.   

This brings us near the end of the file that looks like this: 
 <tr> 
   <td align="right"><span style="font-size: 14pt;">Max Linear Spd:</span></td> 
   <td><input type="range" id="maxLinearSpeed" min="0.01" max="0.5" step="0.01"  
value="0.5" 
        onChange="writeStatusMessage('maxLinearSpeedDisplay', this.value);" 
        onMouseUp="setMaxLinearSpeed(this.value);" 
onInput="maxLinearSpeedDisplay.value=this.value;"></td> 
   <td><span style="font-weight: bold;"><output 
id="maxAngularSpeedDisplay" size="4"></output></span></td>  </tr> 

 <tr> 
   <td align="right"><span style="font-size: 14pt;">Max Angular Spd:</span></td> 
   <td><input type="range" id="maxAngularSpeed" min="0.01" max="2.0" step="0.01" 
value="2.0" 
        onChange="writeStatusMessage('maxAngularSpeedDisplay', this.value);"         
onMouseUp="setMaxAngularSpeed(this.value);" 
onInput="maxAngularSpeedDisplay.value=this.value;"></td> 
   <td><span style="font-weight: bold;"><output id="maxAngularSpeedDisplay"  
size="4"></output></span></td> 
 </tr> 

These lines create a pair of slider controls for changing the max linear and angular speed 

of the robot.  We set callbacks on the onChange(), onMouseUp() and onInput() 

events so that we can display the new settings and update the new values in our underlying 

Javascript variables. 

 13.10.2  The JavaScript code: simple_gui.js 

Next, let's examine the simple_gui.js file located in the js subdirectory. 

Link to source: simple_gui.js 

We'll take the script in sections, starting at the top: 
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 // Set the rosbridge and mjpeg_server 
port  var rosbridgePort = "9090";  var 
mjpegPort = "8080"; 

 // Get the current hostname 
 thisHostName = document.location.hostname; 

 // Set the rosbridge and mjpeg server hostname accordingly 
 var rosbridgeHost = thisHostName;  
var mjpegHost = thisHostName; 

 // Build the websocket URL to the rosbride server 
 var serverURL = "ws://" + rosbridgeHost + ":" + rosbridgePort; 

 // The mjpeg client object that will be defined later  
var mjpegViewer; 

 // The default video topic (can be set in the rosbridge launch file)  
var videoTopic = "/camera/rgb/image_color"; 

 // The mjpeg video quality (percent) 
 var videoQuality = 50; 

We begin by setting the port numbers for the rosbridge and mjpeg servers.  Here we 

use the standard ports but you can change them if you are running the server processes 

on alternate ports.  We also pick up the hostname from the server and then construct the 

websocket URL for connecting to the rosbridge server.  The mjpeg host and port will 

be used later in the script for connecting to the video stream. 

Next we set a default ROS topic name for the video stream that can be overridden in the 

rosbridge.launch file and we set the video quality to 50%.  This setting generally 

produces an acceptable image and significantly reduces the load on the CPU from the 

mjpeg_server process.  However, feel free to adjust to your liking. 

 // A varible to hold the chatter topic and publisher  var chatterTopic; 

 // A variable to hold the chatter message 
 var chatterMsg; 

Here we define two variables to hold the chatter topic name and message, both of which 

will be defined later in the script. 

 // The ROS namespace containing parameters for this script  
var param_ns = '/robot_gui'; 

Parameters set in the rosbridge.launch file are tucked underneath a namespace also 

defined in the launch file.  Be default, we use the namespace "/robot_gui".  If for 

some reason you want to use a different namespace, make sure you use the same name 

in both the launch file and the simple_gui.js file. 
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 // Are we on a touch device?  var isTouchDevice = 
'ontouchstart' in document.documentElement; 

 // A flag to indicate when the Shift key is being depressed 
 // The Shift key is used as a "dead man's switch" when using the mouse 
 // to control the motion of the robot.  
var shiftKey = false; 

Here we test to see if we are on a touch device such as a tablet and if so, the variable 

isTouchDevice is set to true; otherwise it will be false.  We can then use this 

variable to  customize the display depending on the type of device we are on. 

We use the variable shiftKey to indicate when the user is holding down the Shift 

key when using a conventional display and mouse.  This will allow us to use the Shift 

key as a dead man's switch so that we can stop the robot if the key is released. 
 // The topic on which to publish Twist messages  
var cmdVelTopic = "/cmd_vel"; 

 // Default linear and angular 
speeds  var defaultLinearSpeed = 
0.5;  var defaultAngularSpeed = 2.0; 

 // Current maximum linear and angular speed (can be overridden in  
rosbridge.launch) 
 var maxLinearSpeed = defaultLinearSpeed;  
var maxAngularSpeed = defaultAngularSpeed; 

 // Minimum linear and angular 
speed  var minLinearSpeed = 0.05;  
var minAngularSpeed = 0.1; 

 // How much to increment speeds with each key 
press  var vx_click_increment = 0.05;  var 
vz_click_increment = 0.1; 

 // Current desired linear and angular speed 
 var vx = 0.0; 
 var vz = 0.0; 

The next set of variables relate to moving the robot base.  Most ROS robots will 

subscribe to the /cmd_vel topic for instructions on how to move so we set that topic as 

the default here.  We then set defaults for the maximum linear and angular speeds and 

how much to increment each speed when clicking on the navigation arrows. 
 // A handle for the publisher timer  
var pubHandle = null; 

 // A handle for the stop timer  
var stopHandle = null; 

 // The rate in Hz for the main ROS publisher loop 
 var rate = 5; 

We will use a Javascript timer for publishing Twist messages on the /cmd_vel topic 

as well as the text message on the /chatter topic (if selected).   We will also use a 

stop timer for automatically stopping the robot when using a touch device when the user 
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lifts their finger off the controls.  Here we define two variables to store handles to these 

timers and will set the timers themselves later in the code.  The rate variable 

determines how often we publish messages. 
 // Get the current window width and height  
var windowWidth = this.window.innerWidth;  
var windowHeight = this.window.innerHeight; 

 // Set the video width to 1/2 of the window width and scale the height 
 // appropriately.  var videoWidth = 
Math.round(windowWidth / 2.0);  var videoHeight = 
Math.round(videoWidth * 240 / 320); 

To ensure a good fit of the video stream regardless of the size of the user's display, we 

set the video width and height variables to be proportional to the current window width 

and height. 
 // The main ROS object  
var ros = new ROSLIB.Ros(); 

 // Connect to rosbridge 
 function init_ros() {  
 ros.connect(serverURL); 

// Set the rosbridge host and port values in the form 
document.getElementById("rosbridgeHost").value = rosbridgeHost; 
document.getElementById("rosbridgePort").value = rosbridgePort; 

 } 

Here we create the main ROSLIB.Ros() object and store it in the variable named ros.  

This object is defined in the roslib.min.js library that we imported at the top of the 

simple_gui.html file.  We will use this object shortly to connect to rosbridge.  We 

also initialize the hostname and port text fields in our GUI from the values defined 

earlier in the script. 

 // If there is an error on the back end, an 
'error' emit will be emitted.  ros.on('error', 
function(error) { 
     console.log("Rosbridge Error: " + 
error);  }); 

The ROSLIB object defines a number of event callbacks.  In these lines we set the "on 

error" callback to simply display the error in the Javascript console. 
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 // Wait until a connection is made before continuing  
ros.on('connection', function() 
{ console.log('Rosbridge connected.'); 

// Create a Param object for the video topic 
var videoTopicParam = new ROSLIB.Param({ 

ros : ros, 
name : param_ns + '/videoTopic' 

}); 

videoTopicParam.get(function(value) 
{ if (value != null) 
{ videoTopic = value; 
} 

}); 

// Create the video viewer if (!mjpegViewer) 
{ mjpegViewer = new MJPEGCANVAS.Viewer({ 

divID : 'videoCanvas', 
host : mjpegHost, 
port : mjpegPort, 
width : videoWidth, 
height : videoHeight, 
quality : 
videoQuality, topic : 
videoTopic 

}); 
} 

Now we get into the heart of the script.  Note how we place the key ROS-related 

functions inside the "on connection" callback for our main ros object.  This ensures 

that we don't try to read or set ROS parameters or topics until we have a connection to 

the rosbridge server. 

In the lines above, we first use the ROSLIB.Param() object to read in the video topic 

as defined in our rosbridge.launch file.  We test for a null value in which case we 

will use the default topic set earlier in the script. 

Next we define the mjpegViewer variable as an instance of the 

MJPEGCANVAS.Viewer() object.  This object type is defined in the 

mjpegcanvas.min.js library that we imported in the simple_gui.html file.  The 

mjpeg viewer object requires the ID of the <div> used in the HTML file to display the 

video stream.  Recall that we used <div id="videoCanvas"> in the  

simple_gui.html file.  We also have to set the host, port, width, height, video quality 

and video topic, all of which we have assigned to the appropriate variables earlier in the 

script. 
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 // Create a Param object for the max linear speed  
var maxLinearSpeedParam = new ROSLIB.Param({ 

ros : ros, 
name : param_ns + '/maxLinearSpeed' 

 }); 

 // Get the value of the max linear speed paramater 
 maxLinearSpeedParam.get(function(value) { 

if (value != null) 
{    maxLinearSpeed = value; 

// Update the value on the GUI 
var element = document.getElementById('maxLinearSpeed'); 
element.setAttribute("max", maxLinearSpeed); 
element.setAttribute("value", maxLinearSpeed / 2.0); 

writeStatusMessage('maxLinearSpeedDisplay',   
maxLinearSpeed.toFixed(1)); 

} 
}); 

This next block attempts to read in a parameter value for maxLinearSpeed that might 

have been set in the rosbridge.launch file.  If a non-null value is obtained, then it 

overrides the global maxLinearSpeed variable set near the top of the script.  We then 

update the slider control on the GUI with the new values.  Note that we have to do this 

inside the parameter callback since roslib functions run asynchronously to prevent 

locking up the overall script.  We therefore want to be sure to update the form element 

just after the parameter value is returned. 

The next block in the script is nearly identical to the one above (so we won't display it 

here) but sets the maxAngularSpeed is the same way.  Next we turn to the chatter 

message. 

 // Create the chatter topic and publisher  
chatterTopic = new ROSLIB.Topic({ 

ros : ros, name : 
'/chatter', 
messageType : 'std_msgs/String', 

 }); 

 // Create the chatter message 
 var message = 
document.getElementById('chatterMessage');  chatterMsg = 
new ROSLIB.Message({ data : message.value 
 }); 

Here we set the chatterTopic variable to an instantiation of the ROSLIB.Topic 

object.  The ROSLIB.Topic object takes parameters for the parent ros object, the topic 

name and the message type.  It also defines functions for advertising, publishing and 

subscribing as we will see later on.  We also create a ROSLIB.Message object to store 

the chatter message and we initialize the message data with the text found in the 

chatterMessage text box on the GUI. 
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 document.addEventListener('keydown', function(e) 
{ if (e.shiftKey) shiftKey = true; 
else shiftKey = false; 
setSpeed(e.keyCode); 

 }, true); 

 document.addEventListener('keyup', function(e) 
{ if (!e.shiftKey) { shiftKey = false; 
stopRobot(); 
} 

 }, true); 

These next two blocks assign callback functions to the keydown and keyup events.  In 

particular, we look for the user to depress the Shift key and set a flag to indicate 

whether or not the Shift key is currently been pressed.  Recall that we will use this 

flag to implement a dead man's switch when using the mouse to control the motion of 

the robot.  If the Shift key is not depressed, we call the function stopRobot() which 

is defined later in the script.  Otherwise we pass along any detected keycode (like the 

press of an arrow key) to the setSpeed() function, also defined later in the script. 
 // Display a line of instructions on how to move the robot 
 if (isTouchDevice) { 

// Set the Nav instructions appropriately for touch var 
navLabel = document.getElementById("navInstructions"); 
navLabel.innerHTML = "Tap an arrow to move the robot"; 

// Hide the publish/subscribe rows on touch devices var 
pubSubBlock = document.getElementById("pubSubBlock"); 
pubSubBlock.style.visibility = 'hidden'; 

 } 
 else {  

// Set the Nav instructions appropriately for mousing var 
navLabel = document.getElementById("navInstructions"); 
navLabel.innerHTML = "Hold down SHIFT Key when clicking 
arrows"; 

 } 

Here we display a line of instructions for moving the robot depending on whether we 

are on a touch screen or a normal display with a mouse.  When using a mouse, we 

remind the user to hold down the Shift key.  Otherwise, the user is instructed to tap 

the arrow keys.  For touch devices (which typically have smaller screens), we also hide 

the publish/subscribe section below the video display and show basically just the 

navigation controls. 
 // Start the publisher loop  
console.log("Starting publishers"); 
 pubHandle = setInterval(refreshPublishers, 1000 / rate); 

Finally, we start the publisher loop.  We use the Javascript setInterval() function 

that can be used like a timer to execute a function given as the first argument every t 

milliseconds as specified by the second argument.  In our case, we are running the 

function called refreshPublishers (described below) every 200 milliseconds which 

gives us our desired rate of 5 times per second. 
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That concludes the "on connection" part of the script.  We now turn to the remaining 

functions that can be called after the connection is up and running. 
 function toggleChatter() { var pubChatterOn = 

document.getElementById('chatterToggle').checked; if (pubChatterOn) 
chatterTopic.advertise(); 
else chatterTopic.unadvertise(); 

 } 

 function updateChatterMsg(msg) 
{ chatterMsg.data = msg; 

 } 

Recall that the toggleChatter() function is bound to the Publish checkbox defined 

in the simple_gui.html file.  If the checkbox is checked, we call the advertise() 

function; otherwise we call unadvertise().  Note that advertising a topic does not 

automatically cause the corresponding message to be published.  Publishing the 

message is taken care of by the next function. 
 function refreshPublishers() { 

// Keep the /cmd_vel messages alive 
pubCmdVel(); 

if (chatterTopic.isAdvertised) 
chatterTopic.publish(chatterMsg); 

 } 

Recall that the refreshPublishers() function fires on the timer we set earlier at a 

frequency of rate times per second.  First we run the pubCmdVel() function  

(described below) to publish the current Twist message for controlling the robot's base.  

We then check to see if the chatterTopic topic is currently advertising and if so, we 

publish the current chatter message. 
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 var cmdVelPub = new ROSLIB.Topic({ 
ros : ros, name : 
cmdVelTopic, 
messageType : 'geometry_msgs/Twist' 

 }); 

 function pubCmdVel() { vx = Math.min(Math.abs(vx), 
maxLinearSpeed) * sign(vx); vz = Math.min(Math.abs(vz), 
maxAngularSpeed) * sign(vz); 

if (isNaN(vx) || isNaN(vz)) { 
vx = 0; 
vz = 0; 

} 

var cmdVelMsg = new 
ROSLIB.Message({ linear : 
{ x : vx, y : 0.0, z : 0.0 
}, angular : 
{ x : 0.0, y : 
0.0, z : vz 
} 

}); 

cmdVelPub.publish(cmdVelMsg); 
 } 

Publishing a Twist message on the /cmd_vel topic introduces a couple of new 

ROSLIB objects.  First we create an instance of the ROSLIB.Topic object that takes 

the main roslib object, the topic name, and the message type as arguments.  We then 

define the function pubCmdVel() that uses the current global variables vx and vz 

representing the desired linear and angular velocities of the robot and creates an 

instance of a  

ROSLIB.Message object configured with the Twist message type and vx and vz in 

the appropriate slots.  At the end of the function, we publish the actual message on the 

/cmd_vel topic using the publish() function that is defined for all ROSLIB.Topic 

objects. 

 // Speed control using the arrow keys or icons 
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 function setSpeed(code) { 
// Stop if the deadman key (Shift) is not depressed 
if (!shiftKey && !isTouchDevice) { 

stopRobot(); 
return; 

} 

// Use space bar as an emergency stop 
if (code == 32) { 

vx = 0; 
vz = 0; 

} 
// Left arrow 
else if (code == "left" || code == 37) 

{ vz += vz_click_increment; 
} 
// Up arrow 
else if (code == 'forward' || code == 38) 

{ vx += vx_click_increment; 
} 
// Right arrow 
else if (code == 'right' || code == 39) 

{ vz -= vz_click_increment; 
} 
// Down arrow 
else if (code == 'backward' || code == 40) 

{ vx -= vx_click_increment; 
} 

var statusMessage = "vx: " + vx.toFixed(2) + " vz: " + vz.toFixed(2); 
writeStatusMessage('cmdVelStatusMessage', statusMessage); 

 } 

Recall that in the simple_gui.html file that defines the layout of our GUI, we 

assigned the setSpeed() function to the onClick and onTouchStart events for the 

navigation arrow icons.  Here at last we define that function.  The speed code can either 

be a string such as 'forward' or 'left' or a keycode that will be available when a key is 

pressed such as an arrow key.  Depending on the keycode detected, we increase or 

decrease the linear and/or angular velocities vx and vz appropriately.  Since the 

pubLoop() is running continually on the timer we set earlier, these new values will be 

published on the /cmd_vel topic. 
 function stopRobot() 

{ vx = vz = 0; 
var statusMessage = "vx: " + vx.toFixed(2) + " vz: " + vz.toFixed(2); 
writeStatusMessage('cmdVelStatusMessage', statusMessage); 
pubCmdVel(); 

 } 

 function timedStopRobot() { 
    stopHandle = setTimeout(function() { stopRobot() }, 
1000);  }  function clearTimedStop() { 
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clearTimeout(stopHandle); 
 } 

The stopRobot() function is fairly self-explanatory.  While the explicit call to 

pubCmdVel() is not strictly necessary because of our repeating pubLoop(), it doesn't 

hurt either and it is best to be safe when trying to stop a moving a robot. 

The timedStopRobot() function is used when using a touch device and calls 

stopRobot() after a delay of one second (1000 milliseconds).  This function is 

assigned to the onTouchEnd event in our GUI so that if the user stops touching the 

arrow icons for one second or more, the robot will stop.  The clearTimedStop() 

function is then used to cancel the stop timer. 
 function subChatter() { var subscribe = 

document.getElementById('chatterSub').checked; var chatterData 
= document.getElementById('chatterData'); var listener = 
chatterTopic; 

if (subscribe) { console.log('Subscribed to ' + 
listener.name); 
listener.subscribe(function(msg) { chatterData.value 

= msg.data; 
}); 

} else { listener.unsubscribe(); 
console.log('Unsubscribed from ' + listener.name); 

} 
 } 

Recall that the subChatter() function is bound to the Subscribe checkbox on the 

GUI.  First we determine if the checkbox is checked and assign the result to the 

subscribe variable.  We also get a pointer to the chatterData text box on the GUI 

so we know where to display the results. 

Next we assign the chatterTopic object to the local listener variable.  While not 

strictly necessary, the assignment reminds us that we are now running in "listen" mode 

rather than publishing.  The ROSLIB.Topic object includes a subscribe function that 

takes another function as a callback. The callback function takes a single argument 

which is the message received on the topic subscribed to.  In the code above, if the 

subscribe checkbox is checked, we create a callback that displays the received 

message in the chatterData textbox on the GUI.  Otherwise, we call the 

unsubscribe() function to stop listening. 

The remaining few functions in the script should now be fairly self-explanatory given 

the discussion above.  We turn next to a more complete GUI using more modern 

Javascript libraries especially suitable to touch devices. 

 13.11  A More Advanced GUI using jQuery, jqWidgets and KineticJS 

We can build a fancier GUI for our robot using some modern HTML5 libraries 

including jQuery, jqWidgets and KineticJS.  These libraries provide functions for 

creating tabbed layouts, multi-layered panels, and user controls more suitable for touch 
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screens.  Although we won't provide a detailed break down of this more advanced GUI, 

the code is relatively straightforward once you know how to use these toolkits.  For 

tutorials and documentation for the toolkits themselves, see the links above. 

The new GUI is defined by the HTML file robot_gui.html in the rbx2_gui 

package and the Javascript file robot_gui.js in the rbx2_gui/js directory.  There 

are also a small number of styles set in the file styles/robot_gui.css.  The 

robot_gui.html file defines a number of tabs (multiple overlapping screens) which 

are defined by separate files in the rbx2_gui/tabs directory.  In summary, our GUI 

is made up of the following directories and files: 

• /rbx2_gui 

• robot_gui.hjtml 

• /tabs 

• main.html 

• navigation.html 

• diagnostics.html 

• parameters.html 

• misc.html 

• /js 

• robot_gui.js 

• styles 

• robot_gui.css 

To try it out, first make sure you have your camera node running: 

$ roslaunch rbx2_video openni_node.launch 

(Or use the uvc_cam.launch file if you are using a webcam.) 

Then launch the rosbridge.launch file if it is not already running: 

$ roslaunch rbx2_gui rosbridge.launch 

(Notice how we are using the same rosbridge launch file as before but we will now 

point our browser to a different web page.  This allows us to have different GUIs served 

up by the same rosbridge server.) 

Now point your browser to the following URL: 

http://localhost:8181/robot_gui.html 
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(Change the port number if you were not able to use port 8181 for the mini-httpd 

webserver.) 

Your browser window should look something like the following:  
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The tabs are arranged across the top—click or tap a tab label to switch to the 

corresponding screen.  Only the Main, Navigation and Misc tabs currently have any 

function—the Diagnostics and Parameters tabs are just place holders to serve as 

additional examples.  These tabs are created using the jqWidgets toolkit and the code 

can be found in the robot_gui.html file. 

On the Main tab, the base control arrows have been replaced with a simulated touch 

pad (colored blue) similar to the base control provided by the ArbotiX Gui we have 

used earlier in the book.  The touch pad is created using the KineticJS toolkit and the 

code is located in the robot_gui.js file.  Drag the yellow disc either with the mouse 

or your finger (on a touch screen) and move it in the direction you want the robot to 

move.  The further away from center you move the disc, the faster the robot will move.  

Release the disc and the robot will stop.  The control pad is positioned so that if you are 

holding a tablet, the yellow disc should fall nicely under your thumb for controlling the 

base. 

The maximum linear and angular speeds can be adjusted by the slider controls beneath 

the touch pad. 

The charge level of the robot's battery and the laptop battery (if running on a laptop) are 

displayed using a pair of jqWidgets fuel gauges defined in the file tabs/main.html.   
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Subscribing to the appropriate battery level topics is taken care of in the 

robot_gui.js file and will need to be customized for your robot.  We will use the 

fake battery simulator to test them out below. 

The Misc tab contains the same code we used with the simple GUI and is shown below: 

 

The Diagnostics and Parameters tabs are currently just place holders defined by the 

files tabs/diagnostics.html and tabs/parameters.html.  Edit these files to  

include your own code or remove the tabs altogether by editing the file 

robot_gui.html.  For now, the pages simply display the following message: 

 

Before describing the Navigation tab, let's fire up the fake TurtleBot using the test map 

found in rbx2_nav/maps.  (This is the same map we used for the simulated navigation 

test in Volume 1).  We will also set the fake battery runtime to 15 minutes (900 

seconds).   Run the fake_turtlebot.launch file from the rbx2_tasks package 

using the battery_runtime argument and map argument as follows: 

$ roslaunch rbx2_tasks fake_turtlebot.launch battery_runtime:=900 
map:=test_map.yaml 

With the fake battery node running, the Robot Battery fuel gauge on the rosbridge GUI 

should now start falling from 100 to 0 over the course of 15 minutes. 
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Next bring up RViz so that we can confirm that map has been loaded and the fake 

TurtleBot can be seen on the map. 

$ rosrun rviz rviz -d `rospack find rbx2_gui`/nav.rviz 

The view in RViz should look something like this: 

 

Finally, return to the rosbridge GUI in your web browser and click on the Navigation 

tab.  You should see the same map appearing like this: 
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The little orange triangle represents the position and orientation of the robot.  To send 

the robot to a new location, click or tap on the goal location on the map.  If you are 

using a mouse (not a touch screen), you can also click and hold then set the orientation 

as can be done in RViz.  (On a touch screen, only a target position can currently be set.)  

After setting the new goal location, the robot marker should move across the map in 

your browser window while the fake TurtleBot follows the same path in RViz. 

NOTE: The navigation function used here depends on the nav2djs package.  The 

current version of this package appears to have a bug that causes the map to shifted in 

the viewer by an amount equal to the offset of the map's origin.  The version of the 

nav2d.js file found in the rbx2_gui/js directory has been tweaked to fix this bug. 

 13.12  Rosbridge Summary 

These two examples should give you a good idea of how to design your own web-based 

controller for your robot.  In summary, the following components are generally required 

to run on the computer attached to the robot: 

• the rosbridge sever 

• a camera driver 

• the mjpeg server 

• a webserver such as mini-httpd 
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In addition, the layout and functions of your GUI will be defined by one or more HTML 

files and Javascript files located in the document root of the web server.  Any HTML5 

web client should then be able to connect to your robot by pointing to the URL: 

http://localhost:8181/your_gui.html 

or, if you access your robot over a network: 

http://x.y.z.w:8181/your_gui.html where x.y.z.w is the IP 

address of the machine running the web server. 
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APPENDIX: PLUG AND PLAY USB DEVICES FOR 

ROS: CREATING UDEV RULES 

Many robots use USB serial devices such as micro controllers, servo controllers, laser 

scanners or other peripherals.  When these devices are plugged into a computer running 

Ubuntu, they are assigned a file name of the form /dev/ttyUSBn, /dev/ttyACMn or 

/dev/ttySn where n is an integer beginning with 0 and the choice of USB, ACM, or S 

in the filename depends on the hardware details of the device (e.g. UART).   If more 

than one device in the same class is plugged in, the devices are numbered sequentially 

such as /dev/ttyUSB0 and /dev/ttyUSB1. 

The trouble is that Ubuntu assigns these device names on a first-come first-serve basis.   

So if we plug in device A followed by device B, the first device might be found on 

/dev/ttyUSB0 and the second device on /dev/ttyUSB1.  However, if we plug in 

device B first, the assignment will probably be the reverse. 

This means that it is not a good idea to hard code these device names into configuration 

files or launch files since they will likely change if devices are unplugged then plugged 

back in again in a different order. 

Fortunately, Ubuntu provides a way around the problem by allowing us to map unique 

hardware serial numbers to file names of our choosing.  The process is fairly 

straightforward and takes only a few steps. 

 13.13  Adding yourself to the dialout Group 

Before anything else, it is essential to add yourself to the Linux dialout group.  This 

will ensure that you have the needed read/write access on all serial ports.  Simply run 

the following command: 

$ sudo adduser your_login_name dialout  

For example, if your login name is robomeister, then use the command: 

$ sudo adduser robomeister dialout 

Then log out of your window session completely, and log back in again.  Alternatively, 

simply reboot your computer. 
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Determining the Serial Number of a Device 

Suppose we have an Arduino that we want to plug into one of our robot's USB ports.  

Before plugging in the device, run the following command in any open terminal: 

$ tail -f /var/log/syslog | grep tty 

Initially, this command should produce no output. 

Now plug in the your device (the Arduino in our example) and monitor the output in the 

terminal window.  In my case, after a short delay I see the output: 

Oct  9 18:50:21 pi-robot-z935 kernel: [75067.120457] cdc_acm 2-1.3:1.0: 
ttyACM0: USB ACM device 

The appearance of ttyACM0 in the output tells me that the Arduino was assigned device 

name /dev/ttyACM0.  You can verify this with the command: 

 

which should produce an output similar to this: 

crw-rw---- 1 root dialout 166, 0 Oct  9 18:50 /dev/ttyACM0  

(Note that the timestamp should be close to the time when you plugged in the device.) 

Now that we know that the device name for the Arduino is /dev/ttyACM0, we can use 

the udevadm utility to get its serial number:   

$ udevadm info -q all -n /dev/ttyACM0 | grep -w ID_SERIAL_SHORT 

In my case, the output is: 

E: ID_SERIAL_SHORT=74133353437351200150  

The number we want is the part after the equals sign above: 

74133353437351200150  

Now that we have the Arduino's serial number, let's map it to a device filename. 

 

$ ls -l /dev/ttyACM0 
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UDEV Rules 

A mapping between serial numbers and device filenames can be created using a set of 

UDEV rules that we store in a file in the directory /etc/udev/rules.d.  The first 

thing we need to do is create a file in this directory to hold our rules. 

Begin by moving into the directory and list the files that are already there: 

 

The output should look something like this:  

-rw-r--r-- 1 root    root     306 Oct 12  2011 70-persistent-cd.rules  
-rw-r--r-- 1 root    root     818 Oct  9  2012 70-persistent-net.rules  
-rw-r--r-- 1 root    root      50 Oct  1  2012 ft-rockey.rules  
-rw-r--r-- 1 root    root    1157 Oct  8  2011 README  

  

Create a file with a unique name like 40-my-robot.rules using your favorite editor 

where the leading number is unique.  Note that since we are creating a file in a system 

directory, we need to use sudo: 

$ sudo gedit 40-my-robot.rules 

Now add a line like the following: 

SUBSYSTEM=="tty", ENV{ID_SERIAL_SHORT}=="74133353437351200150",  
MODE="0666", OWNER="robomeister", GROUP="robomeister",  

SYMLINK+="arduino" where we have set the ID_SERIAL_SHORT variable to the value 

we found earlier for the Arduino—change this to reflect your device's ID.    The MODE 

can always be set to 0666 and the OWNER and GROUP should be set to your Ubuntu 

username. 

The SYMLINK variable defines the name we want our device to have: in this case, it will 

be /dev/arduino since "/dev" will be automatically prepended to the name we 

choose. 

Save your changes and exit the editor.  Then run the following command to reload the 

UDEV rules: 

$ sudo service udev restart 

That' all there is to it.  We're now ready to test our new rule. 

$ cd /etc/udev/rules.d 
$ ls -l  
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Testing a UDEV Rule 

If your USB device is still plugged in, unplug it now.  Wait a few seconds, then plug it 

back in.  Now see if you can list the device's new filename: 

 

In my case this returns the result: 

lrwxrwxrwx 1 root root 7 Oct 10 18:21 /dev/arduino -> ttyACM0  

As you can see, a symbolic link has been created between /dev/arduino and the real 

device file /dev/ttyACM0.  If there had been another ACM device plugged in before we 

plugged in the Arduino, then /dev/ttyACM0 would have been taken and the link 

would have been made to /dev/ttyACM1 instead.  But in either case, we can just use 

/dev/arduino in our ROS configuration files and not worry about the underlying 

physical device name anymore 

 13.17  Using a UDEV Device Name in a ROS Configuration File 

Earlier in the book, we ran a number of examples using the ArbotiX Dynamixel driver 

and a USB2Dynamixel controller.  In those cases we set the port name in the 

configuration files to be /dev/ttyUSB0.  If we create a UDEV rule so that our 

USB2Dyanmixel's serial number maps into the symlink /dev/usb2dynamixel, then 

we can use this port name instead in the configuration file.  For example, the 

pi_robot_head_only.yaml file found in the 

rbx2_dynamixels/config/arbotix directory could be written as follows: 

port: 
/dev/usb2dynamixel 
baud: 1000000 rate: 100 
sync_write: True 
sync_read: False 
read_rate: 10 
write_rate: 10 

joints: { 
    head_pan_joint: {id: 1, neutral: 512, min_angle: -145, max_angle: 145},     

head_tilt_joint: {id: 2, neutral: 512, min_angle: -90, max_angle: 90} } 

controllers: { 

 

$ ls -l /dev/arduino 
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   head_controller: {onboard: False, action_name: 
head_controller/follow_joint_trajectory, type: follow_controller, joints:  
[head_pan_joint, head_tilt_joint]} 
} 

Note that we have simply replaced /dev/ttyUSB0 with /dev/usb2dynamixel for 

the port value.  Now it does not matter if the USB2Dynamixel controller is assigned a 

different USB number by the operating system some time later—our configuration file 

will still work without modification. 
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